
5
Single-layer
Networks:

Classification

In the previous chapter, we explored a class of regression models in which the out-
put variables were linear functions of the model parameters and which can therefore
be expressed as simple neural networks having a single layer of weight and bias
parameters. We turn now to a discussion of classification problems, and in this chap-
ter, we will focus on an analogous class of models that again can be expressed as
single-layer neural networks. These will allow us to introduce many of the key con-
cepts of classification before dealing with more general deep neural networks in later
chapters.

The goal in classification is to take an input vector x ∈ RD and assign it to one
of K discrete classes Ck where k = 1, . . . ,K . In the most common scenario, the
classes are taken to be disjoint, so that each input is assigned to one and only one
class. The input space is thereby divided into decision regions whose boundaries are
called decision boundaries or decision surfaces. In this chapter, we consider linear

131© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
C. M. Bishop, H. Bishop, Deep Learning, https://doi.org/10.1007/978-3-031-45468-4_5

132 5. SINGLE-LAYER NETWORKS: CLASSIFICATION

models for classification, by which we mean that the decision surfaces are linear
functions of the input vector x and, hence, are defined by (D − 1)-dimensional
hyperplanes within the D-dimensional input space. Data sets whose classes can
be separated exactly by linear decision surfaces are said to be linearly separable.
Linear classification models can be applied to data sets that are not linearly separable,
although not all inputs will be correctly classified.

We can broadly identify three distinct approaches to solving classification prob-
lems. The simplest involves constructing a discriminant function that directly assigns
each vector x to a specific class. A more powerful approach, however, models the
conditional probability distributions p(Ck|x) in an inference stage and subsequently
uses these distributions to make optimal decisions. Separating inference and deci-
sion brings numerous benefits. There are two different approaches to determiningSection 5.2.4
the conditional probabilities p(Ck|x). One technique is to model them directly, for
example by representing them as parametric models and then optimizing the param-
eters using a training set. This will be called a discriminative probabilistic model.
Alternatively, we can model the class-conditional densities p(x|Ck), together with
the prior probabilities p(Ck) for the classes, and then compute the required posterior
probabilities using Bayes’ theorem:

p(Ck|x) =
p(x|Ck)p(Ck)

p(x)
. (5.1)

This will be called a generative probabilistic model because it offers the opportunity
to generate samples from each of the class-conditional densities p(x|Ck). In this
chapter, we will discuss examples of all three approaches: discriminant functions,
generative probabilistic models, and discriminative probabilistic models.

5.1. Discriminant Functions

A discriminant is a function that takes an input vector x and assigns it to one of K
classes, denoted Ck. In this chapter, we will restrict attention to linear discriminants,
namely those for which the decision surfaces are hyperplanes. To simplify the dis-
cussion, we consider first two classes and then investigate the extension to K > 2
classes.

5.1.1 Two classes
The simplest representation of a linear discriminant function is obtained by tak-

ing a linear function of the input vector so that

y(x) = wTx+ w0 (5.2)

where w is called a weight vector, and w0 is a bias (not to be confused with bias in
the statistical sense). An input vector x is assigned to class C1 if y(x) ! 0 and to
class C2 otherwise. The corresponding decision boundary is therefore defined by the
relation y(x) = 0, which corresponds to a (D − 1)-dimensional hyperplane within

5.1. Discriminant Functions 133

Figure 5.1 Illustration of the geometry of
a linear discriminant function in two dimen-
sions. The decision surface, shown in red,
is perpendicular tow, and its displacement
from the origin is controlled by the bias pa-
rameter w0. Also, the signed orthogonal
distance of a general point x from the deci-
sion surface is given by y(x)/∥w∥.

x2

x1

w
x

y(x)
∥w∥

x⊥

−w0
∥w∥

y = 0
y < 0

y > 0

R2

R1

theD-dimensional input space. Consider two points xA and xB both of which lie on
the decision surface. Because y(xA) = y(xB) = 0, we havewT(xA − xB) = 0 and
hence the vector w is orthogonal to every vector lying within the decision surface,
and sow determines the orientation of the decision surface. Similarly, if x is a point
on the decision surface, then y(x) = 0, and so the normal distance from the origin
to the decision surface is given by

wTx

∥w∥ = − w0

∥w∥ . (5.3)

We therefore see that the bias parameter w0 determines the location of the decision
surface. These properties are illustrated for the case of D = 2 in Figure 5.1.

Furthermore, note that the value of y(x) gives a signed measure of the perpen-
dicular distance r of the point x from the decision surface. To see this, consider an
arbitrary point x and let x⊥ be its orthogonal projection onto the decision surface,
so that

x = x⊥ + r
w

∥w∥ . (5.4)

Multiplying both sides of this result bywT and addingw0, and making use of y(x) =
wTx+ w0 and y(x⊥) = wTx⊥ + w0 = 0, we have

r =
y(x)

∥w∥ . (5.5)

This result is illustrated in Figure 5.1.
As with linear regression models, it is sometimes convenient to use a more com-Section 4.1.1

pact notation in which we introduce an additional dummy ‘input’ value x0 = 1 and
then define w̃ = (w0,w) and x̃ = (x0,x) so that

y(x) = w̃Tx̃. (5.6)

134 5. SINGLE-LAYER NETWORKS: CLASSIFICATION

R1

R2

R3

?

C1

not C1
C2

not C2

R1

R2

R3

?C1

C2

C1
C3

C2

C3

Figure 5.2 Attempting to construct a K-class discriminant from a set of two-class discriminant functions leads
to ambiguous regions, as shown in green. On the left is an example with two discriminant functions designed to
distinguish points in class Ck from points not in class Ck. On the right is an example involving three discriminant
functions each of which is used to separate a pair of classes Ck and Cj .

In this case, the decision surfaces are D-dimensional hyperplanes passing through
the origin of the (D + 1)-dimensional expanded input space.

5.1.2 Multiple classes
Now consider the extension of linear discriminant functions to K > 2 classes.

We might be tempted to build a K-class discriminant by combining a number of
two-class discriminant functions. However, this leads to some serious difficulties
(Duda and Hart, 1973), as we now show.

Consider a model withK − 1 classifiers, each of which solves a two-class prob-
lem of separating points in a particular class Ck from points not in that class. This
is known as a one-versus-the-rest classifier. The left-hand example in Figure 5.2
shows an example involving three classes where this approach leads to regions of
input space that are ambiguously classified.

An alternative is to introduce K(K − 1)/2 binary discriminant functions, one
for every possible pair of classes. This is known as a one-versus-one classifier. Each
point is then classified according to a majority vote amongst the discriminant func-
tions. However, this too runs into the problem of ambiguous regions, as illustrated
in the right-hand diagram of Figure 5.2.

We can avoid these difficulties by considering a single K-class discriminant
comprisingK linear functions of the form

yk(x) = wT
k x+ wk0 (5.7)

and then assigning a point x to class Ck if yk(x) > yj(x) for all j ̸= k. The decision
boundary between class Ck and class Cj is therefore given by yk(x) = yj(x) and

5.1. Discriminant Functions 135

Figure 5.3 Illustration of the decision regions for a
multi-class linear discriminant, with the
decision boundaries shown in red. If
two points xA and xB both lie inside the
same decision region Rk, then any point
x̂ that lies on the line connecting these
two points must also lie in Rk, and hence,
the decision region must be singly con-
nected and convex.

Ri

Rj

Rk

xA

xB

x̂

hence corresponds to a (D − 1)-dimensional hyperplane defined by

(wk −wj)
Tx+ (wk0 − wj0) = 0. (5.8)

This has the same form as the decision boundary for the two-class case discussed in
Section 5.1.1, and so analogous geometrical properties apply.

The decision regions of such a discriminant are always singly connected and
convex. To see this, consider two points xA and xB both of which lie inside decision
region Rk, as illustrated in Figure 5.3. Any point x̂ that lies on the line connecting
xA and xB can be expressed in the form

x̂ = λxA + (1− λ)xB (5.9)

where 0 " λ " 1. From the linearity of the discriminant functions, it follows that

yk(x̂) = λyk(xA) + (1− λ)yk(xB). (5.10)

Because both xA and xB lie inside Rk, it follows that yk(xA) > yj(xA) and that
yk(xB) > yj(xB), for all j ̸= k, and hence yk(x̂) > yj(x̂), and so x̂ also lies inside
Rk. Thus,Rk is singly connected and convex.

Note that for two classes, we can either employ the formalism discussed here,
based on two discriminant functions y1(x) and y2(x), or else use the simpler but
essentially equivalent formulation based on a single discriminant function y(x).Section 5.1.1

5.1.3 1-of-K coding
For regression problems, the target variable t was simply the vector of real num-

bers whose values we wish to predict. In classification, there are various ways of
using target values to represent class labels. For two-class problems, the most conve-
nient is the binary representation in which there is a single target variable t ∈ {0, 1}
such that t = 1 represents class C1 and t = 0 represents class C2. We can interpret
the value of t as the probability that the class is C1, with the probability values taking
only the extreme values of 0 and 1. For K > 2 classes, it is convenient to use a
1-of-K coding scheme, also known as the one-hot encoding scheme, in which t is
a vector of length K such that if the class is Cj , then all elements tk of t are zero

136 5. SINGLE-LAYER NETWORKS: CLASSIFICATION

except element tj , which takes the value 1. For instance, if we have K = 5 classes,
then a data point from class 2 would be given the target vector

t = (0, 1, 0, 0, 0)T. (5.11)

Again, we can interpret the value of tk as the probability that the class is Ck in which
the probabilities take only the values 0 and 1.

5.1.4 Least squares for classification
With linear regression models, the minimization of a sum-of-squares error func-

tion leads to a simple closed-form solution for the parameter values. It is thereforeSection 4.1.3
tempting to see if we can apply the same least-squares formalism to classification
problems. Consider a general classification problem with K classes and a 1-of-K
binary coding scheme for the target vector t. One justification for using least squares
in such a context is that it approximates the conditional expectation E[t|x] of the
target values given the input vector. For a binary coding scheme, this conditional ex-
pectation is given by the vector of posterior class probabilities. Unfortunately, theseExercise 5.1
probabilities are typically approximated rather poorly, and indeed the approxima-
tions can have values outside the range (0, 1). However, it is instructional to explore
these simple models and to understand how these limitations arise.

Each class Ck is described by its own linear model so that

yk(x) = wT
k x+ wk0 (5.12)

where k = 1, . . . ,K . We can conveniently group these together using vector nota-
tion so that

y(x) = W̃Tx̃ (5.13)

where W̃ is a matrix whose kth column comprises the (D + 1)-dimensional vector
w̃k = (wk0,wT

k)
T and x̃ is the corresponding augmented input vector (1,xT)T with

a dummy input x0 = 1. A new input x is then assigned to the class for which the
output yk = w̃T

k x̃ is largest.
We now determine the parameter matrix W̃ by minimizing a sum-of-squares

error function. Consider a training data set {xn, tn} where n = 1, . . . , N , and
define a matrix T whose nth row is the vector tTn , together with a matrix X̃ whose
nth row is x̃T

n . The sum-of-squares error function can then be written as

ED(W̃) =
1

2
Tr
{
(X̃W̃ −T)T(X̃W̃ −T)

}
. (5.14)

Setting the derivative with respect to W̃ to zero and rearranging, we obtain the solu-
tion for W̃ in the form

W̃ = (X̃TX̃)−1X̃TT = X̃†T (5.15)

where X̃† is the pseudo-inverse of the matrix X̃. We then obtain the discriminantSection 4.1.3

5.1. Discriminant Functions 137

function in the form
y(x) = W̃Tx̃ = TT

(
X̃†
)T

x̃. (5.16)

An interesting property of least-squares solutions with multiple target variables
is that if every target vector in the training set satisfies some linear constraint

aTtn + b = 0 (5.17)

for some constants a and b, then the model prediction for any value of x will satisfy
the same constraint so thatExercise 5.3

aTy(x) + b = 0. (5.18)

Thus, if we use a 1-of-K coding scheme for K classes, then the predictions made
by the model will have the property that the elements of y(x) will sum to 1 for any
value of x. However, this summation constraint alone is not sufficient to allow the
model outputs to be interpreted as probabilities because they are not constrained to
lie within the interval (0, 1).

The least-squares approach gives an exact closed-form solution for the discrim-
inant function parameters. However, even as a discriminant function (where we use
it to make decisions directly and dispense with any probabilistic interpretation), it
suffers from some severe problems. We have seen that the sum-of-squares error
function can be viewed as the negative log likelihood under the assumption of a
Gaussian noise distribution. If the true distribution of the data is markedly differentSection 2.3.4
from being Gaussian, then least squares can give poor results. In particular, least
squares is very sensitive to the presence of outliers, which are data points located a
long way from the bulk of the data. This is illustrated in Figure 5.4. Here we see that
the additional data points in the right-hand figure produce a significant change in the
location of the decision boundary, even though these points would be correctly clas-
sified by the original decision boundary in the left-hand figure. The sum-of-squares
error function gives too much weight to data points that are a long way from the
decision boundary, even though they are correctly classified. Outliers can arise due
to rare events or may simply be due to mistakes in the data set. Techniques that are
sensitive to a very few data points are said to lack robustness. For comparison, Fig-
ure 5.4 also shows results from a technique called logistic regression, which is moreSection 5.4.3
robust to outliers.

The failure of least squares should not surprise us when we recall that it cor-
responds to maximum likelihood under the assumption of a Gaussian conditional
distribution, whereas binary target vectors clearly have a distribution that is far from
Gaussian. By adopting more appropriate probabilistic models, we can obtain clas-
sification techniques with much better properties than least squares, and which can
also be generalized to give flexible nonlinear neural network models, as we will see
in later chapters.

138 5. SINGLE-LAYER NETWORKS: CLASSIFICATION

−4 −2 0 2 4 6 8

−8

−6

−4

−2

0

2

4

−4 −2 0 2 4 6 8

−8

−6

−4

−2

0

2

4

Figure 5.4 The left-hand plot shows data from two classes, denoted by red crosses and blue circles, together
with the decision boundaries found by least squares (magenta curve) and by a logistic regression model (green
curve). The right-hand plot shows the corresponding results obtained when extra data points are added at the
bottom right of the diagram, showing that least squares is highly sensitive to outliers, unlike logistic regression.

5.2. Decision Theory

When we discussed linear regression we saw how the process of making predictions
in machine learning can be broken down into the two stages of inference and de-
cision. We now explore this perspective in much greater depth specifically in theSection 4.2
context of classifiers.

Suppose we have an input vector x together with a corresponding vector t of
target variables, and our goal is to predict t given a new value for x. For regression
problems, t will comprise continuous variables and in general will be a vector as
we may wish to predict several related quantities. For classification problems, t will
represent class labels. Again, t will in general be a vector if we have more than
two classes. The joint probability distribution p(x, t) provides a complete summary
of the uncertainty associated with these variables. Determining p(x, t) from a set
of training data is an example of inference and is typically a very difficult problem
whose solution forms the subject of much of this book. In a practical application,
however, we must often make a specific prediction for the value of t or more gen-
erally take a specific action based on our understanding of the values t is likely to
take, and this aspect is the subject of decision theory.

Consider, for example, our earlier medical diagnosis problem in which we have
taken an image of a skin lesion on a patient, and we wish to determine whether the
patient has cancer. In this case, the input vector x is the set of pixel intensities in

5.2. Decision Theory 139

the image, and the output variable t will represent the absence of cancer, which we
denote by the class C1, or the presence of cancer, which we denote by the class C2.
We might, for instance, choose t to be a binary variable such that t = 0 corresponds
to class C1 and t = 1 corresponds to class C2. We will see later that this choice of
label values is particularly convenient when working with probabilities. The gen-
eral inference problem then involves determining the joint distribution p(x, Ck), or
equivalently p(x, t), which gives us the most complete probabilistic description of
the variables. Although this can be a very useful and informative quantity, ultimately,
we must decide either to give treatment to the patient or not, and we would like this
choice to be optimal according to some appropriate criterion (Duda and Hart, 1973).
This is the decision step, and the aim of decision theory is that it should tell us how
to make optimal decisions given the appropriate probabilities. We will see that the
decision stage is generally very simple, even trivial, once we have solved the in-
ference problem. Here we give an introduction to the key ideas of decision theory
as required for the rest of the book. Further background, as well as more detailed
accounts, can be found in Berger (1985) and Bather (2000).

Before giving a more detailed analysis, let us first consider informally how we
might expect probabilities to play a role in making decisions. When we obtain the
skin image x for a new patient, our goal is to decide which of the two classes to assign
the image to. We are therefore interested in the probabilities of the two classes, given
the image, which are given by p(Ck|x). Using Bayes’ theorem, these probabilities
can be expressed in the form

p(Ck|x) =
p(x|Ck)p(Ck)

p(x)
. (5.19)

Note that any of the quantities appearing in Bayes’ theorem can be obtained from
the joint distribution p(x, Ck) by either marginalizing or conditioning with respect to
the appropriate variables. We can now interpret p(Ck) as the prior probability for the
class Ck and p(Ck|x) as the corresponding posterior probability. Thus, p(C1) repre-
sents the probability that a person has cancer, before the image is taken. Similarly,
p(C1|x) is the posterior probability, revised using Bayes’ theorem in light of the in-
formation contained in the image. If our aim is to minimize the chance of assigning
x to the wrong class, then intuitively we would choose the class having the higher
posterior probability. We now show that this intuition is correct, and we also discuss
more general criteria for making decisions.

5.2.1 Misclassification rate
Suppose that our goal is simply to make as few misclassifications as possible.

We need a rule that assigns each value of x to one of the available classes. Such a
rule will divide the input space into regionsRk called decision regions, one for each
class, such that all points in Rk are assigned to class Ck. The boundaries between
decision regions are called decision boundaries or decision surfaces. Note that each
decision region need not be contiguous but could comprise some number of disjoint
regions. To find the optimal decision rule, consider first the case of two classes, as in
the cancer problem, for instance. A mistake occurs when an input vector belonging

140 5. SINGLE-LAYER NETWORKS: CLASSIFICATION

to class C1 is assigned to class C2 or vice versa. The probability of this occurring is
given by

p(mistake) = p(x ∈ R1, C2) + p(x ∈ R2, C1)

=

∫

R1

p(x, C2) dx+

∫

R2

p(x, C1) dx. (5.20)

We are free to choose the decision rule that assigns each point x to one of the
two classes. Clearly, to minimize p(mistake) we should arrange that each x is as-
signed to whichever class has the smaller value of the integrand in (5.20). Thus, if
p(x, C1) > p(x, C2) for a given value of x, then we should assign that x to class
C1. From the product rule of probability, we have p(x, Ck) = p(Ck|x)p(x). Because
the factor p(x) is common to both terms, we can restate this result as saying that
the minimum probability of making a mistake is obtained if each value of x is as-
signed to the class for which the posterior probability p(Ck|x) is largest. This result
is illustrated for two classes and a single input variable x in Figure 5.5.

For the more general case of K classes, it is slightly easier to maximize the
probability of being correct, which is given by

p(correct) =
K∑

k=1

p(x ∈ Rk, Ck)

=
K∑

k=1

∫

Rk

p(x, Ck) dx, (5.21)

which is maximized when the regions Rk are chosen such that each x is assigned
to the class for which p(x, Ck) is largest. Again, using the product rule p(x, Ck) =
p(Ck|x)p(x), and noting that the factor of p(x) is common to all terms, we see
that each x should be assigned to the class having the largest posterior probability
p(Ck|x).

5.2.2 Expected loss
For many applications, our objective will be more complex than simply mini-

mizing the number of misclassifications. Let us consider again the medical diagnosis
problem. We note that, if a patient who does not have cancer is incorrectly diagnosed
as having cancer, the consequences may be that they experience some distress plus
there is the need for further investigations. Conversely, if a patient with cancer is
diagnosed as healthy, the result may be premature death due to lack of treatment.
Thus, the consequences of these two types of mistake can be dramatically different.
It would clearly be better to make fewer mistakes of the second kind, even if this was
at the expense of making more mistakes of the first kind.

We can formalize such issues through the introduction of a loss function, also
called a cost function, which is a single, overall measure of loss incurred in taking
any of the available decisions or actions. Our goal is then to minimize the total loss
incurred. Note that some authors consider instead a utility function, whose value

5.2. Decision Theory 141

x̂x0

p(x, C1)

p(x, C2)

R1 R2

(a)

x̂

p(x, C1)

p(x, C2)

R1 R2

(b)

Figure 5.5 Schematic illustration of the joint probabilities p(x, Ck) for each of two classes plotted against x,
together with the decision boundary x = x̂. Values of x ! x̂ are classified as class C2 and hence belong to
decision region R2, whereas points x < x̂ are classified as C1 and belong to R1. Errors arise from the blue,
green, and red regions, so that for x < x̂, the errors are due to points from class C2 being misclassified as C1

(represented by the sum of the red and green regions). Conversely for points in the region x ! x̂, the errors are
due to points from class C1 being misclassified as C2 (represented by the blue region). By varying the location
x̂ of the decision boundary, as indicated by the red double-headed arrow in (a), the combined areas of the blue
and green regions remains constant, whereas the size of the red region varies. The optimal choice for x̂ is where
the curves for p(x, C1) and p(x, C2) cross, as shown in (b) and corresponding to x̂ = x0, because in this case
the red region disappears. This is equivalent to the minimum misclassification rate decision rule, which assigns
each value of x to the class having the higher posterior probability p(Ck|x).

142 5. SINGLE-LAYER NETWORKS: CLASSIFICATION

Figure 5.6 An example of a loss matrix with elements
Lkj for the cancer treatment problem. The rows cor-
respond to the true class, whereas the columns corre-
spond to the assignment of class made by our decision
criterion.

(normal cancer
normal 0 1
cancer 100 0

)

they aim to maximize. These are equivalent concepts if we take the utility to be
simply the negative of the loss. Throughout this text we will use the loss function
convention. Suppose that, for a new value of x, the true class is Ck and that we assign
x to class Cj (where j may or may not be equal to k). In so doing, we incur some
level of loss that we denote by Lkj , which we can view as the k, j element of a loss
matrix. For instance, in our cancer example, we might have a loss matrix of the form
shown in Figure 5.6. This particular loss matrix says that there is no loss incurred if
the correct decision is made, there is a loss of 1 if a healthy patient is diagnosed as
having cancer, whereas there is a loss of 100 if a patient having cancer is diagnosed
as healthy.

The optimal solution is the one that minimizes the loss function. However, the
loss function depends on the true class, which is unknown. For a given input vector x,
our uncertainty in the true class is expressed through the joint probability distribution
p(x, Ck), and so we seek instead to minimize the average loss, where the average is
computed with respect to this distribution and is given by

E[L] =
∑

k

∑

j

∫

Rj

Lkjp(x, Ck) dx. (5.22)

Each x can be assigned independently to one of the decision regions Rj . Our goal
is to choose the regionsRj to minimize the expected loss (5.22), which implies that
for each x, we should minimize

∑
k Lkjp(x, Ck). As before, we can use the product

rule p(x, Ck) = p(Ck|x)p(x) to eliminate the common factor of p(x). Thus, the
decision rule that minimizes the expected loss assigns each new x to the class j for
which the quantity ∑

k

Lkjp(Ck|x) (5.23)

is a minimum. Once we have chosen values for the loss matrix elements Lkj , this is
clearly trivial to do.

5.2.3 The reject option
We have seen that classification errors arise from the regions of input space

where the largest of the posterior probabilities p(Ck|x) is significantly less than unity
or equivalently where the joint distributions p(x, Ck) have comparable values. These
are the regions where we are relatively uncertain about class membership. In some
applications, it will be appropriate to avoid making decisions on the difficult cases
in anticipation of obtaining a lower error rate on those examples for which a classi-
fication decision is made. This is known as the reject option. For example, in our
hypothetical cancer screening example, it may be appropriate to use an automatic

5.2. Decision Theory 143

Figure 5.7 Illustration of the reject option. Inputs
x such that the larger of the two poste-
rior probabilities is less than or equal to
some threshold θ will be rejected.

x

p(C1|x) p(C2|x)

0.0

1.0
θ

reject region

system to classify those images for which there is little doubt as to the correct class,
while requesting a biopsy to classify the more ambiguous cases. We can achieve this
by introducing a threshold θ and rejecting those inputs x for which the largest of
the posterior probabilities p(Ck|x) is less than or equal to θ. This is illustrated for
two classes and a single continuous input variable x in Figure 5.7. Note that setting
θ = 1 will ensure that all examples are rejected, whereas if there areK classes, then
setting θ < 1/K will ensure that no examples are rejected. Thus, the fraction of
examples that are rejected is controlled by the value of θ.

We can easily extend the reject criterion to minimize the expected loss, when a
loss matrix is given, by taking account of the loss incurred when a reject decision is
made.Exercise 5.10

5.2.4 Inference and decision
We have broken the classification problem down into two separate stages, the

inference stage in which we use training data to learn a model for p(Ck|x) and the
subsequent decision stage in which we use these posterior probabilities to make op-
timal class assignments. An alternative possibility would be to solve both problems
together and simply learn a function that maps inputs x directly into decisions. Such
a function is called a discriminant function.

In fact, we can identify three distinct approaches to solving decision problems,
all of which have been used in practical applications. These are, in decreasing order
of complexity, as follows:

(a) First, solve the inference problem of determining the class-conditional den-
sities p(x|Ck) for each class Ck individually. Separately infer the prior class
probabilities p(Ck). Then use Bayes’ theorem in the form

p(Ck|x) =
p(x|Ck)p(Ck)

p(x)
(5.24)

to find the posterior class probabilities p(Ck|x). As usual, the denominator in

144 5. SINGLE-LAYER NETWORKS: CLASSIFICATION

Bayes’ theorem can be found in terms of the quantities in the numerator, using

p(x) =
∑

k

p(x|Ck)p(Ck). (5.25)

Equivalently, we can model the joint distribution p(x, Ck) directly and then
normalize to obtain the posterior probabilities. Having found the posterior
probabilities, we use decision theory to determine the class membership for
each new input x. Approaches that explicitly or implicitly model the distribu-
tion of inputs as well as outputs are known as generative models, because by
sampling from them, it is possible to generate synthetic data points in the input
space.

(b) First, solve the inference problem of determining the posterior class probabili-
ties p(Ck|x), and then subsequently use decision theory to assign each new x to
one of the classes. Approaches that model the posterior probabilities directly
are called discriminative models.

(c) Find a function f(x), called a discriminant function, that maps each input x
directly onto a class label. For instance, for two-class problems, f(·) might be
binary valued and such that f = 0 represents class C1 and f = 1 represents
class C2. In this case, probabilities play no role.

Let us consider the relative merits of these three alternatives. Approach (a) is the
most demanding because it involves finding the joint distribution over both x and
Ck. For many applications, x will have high dimensionality, and consequently, we
may need a large training set to be able to determine the class-conditional densities to
reasonable accuracy. Note that the class priors p(Ck) can often be estimated simply
from the fractions of the training set data points in each of the classes. One advantage
of approach (a), however, is that it also allows the marginal density of data p(x) to
be determined from (5.25). This can be useful for detecting new data points that
have low probability under the model and for which the predictions may be of low
accuracy, which is known as outlier detection or novelty detection (Bishop, 1994;
Tarassenko, 1995).

However, if we wish only to make classification decisions, then it can be waste-
ful of computational resources and excessively demanding of data to find the joint
distribution p(x, Ck) when in fact we really need only the posterior probabilities
p(Ck|x), which can be obtained directly through approach (b). Indeed, the class-
conditional densities may contain a significant amount of structure that has little ef-
fect on the posterior probabilities, as illustrated in Figure 5.8. There has been much
interest in exploring the relative merits of generative and discriminative approaches
to machine learning and in finding ways to combine them (Jebara, 2004; Lasserre,
Bishop, and Minka, 2006).

An even simpler approach is (c) in which we use the training data to find a
discriminant function f(x) that maps each x directly onto a class label, thereby
combining the inference and decision stages into a single learning problem. In the
example of Figure 5.8, this would correspond to finding the value of x shown by

5.2. Decision Theory 145

p(x|C1)

p(x|C2)

x

cl
as

s
de

ns
iti

es

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

x

p(C1|x) p(C2|x)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

Figure 5.8 Example of the class-conditional densities for two classes having a single input variable x (left
plot) together with the corresponding posterior probabilities (right plot). Note that the left-hand mode of the
class-conditional density p(x|C1), shown in blue on the left plot, has no effect on the posterior probabilities. The
vertical green line in the right plot shows the decision boundary in x that gives the minimum misclassification
rate, assuming the prior class probabilities, p(C1) and p(C2), are equal.

the vertical green line, because this is the decision boundary giving the minimum
probability of misclassification.

With option (c), however, we no longer have access to the posterior probabilities
p(Ck|x). There are many powerful reasons for wanting to compute the posterior
probabilities, even if we subsequently use them to make decisions. These include:

Minimizing risk. Consider a problem in which the elements of the loss matrix are
subjected to revision from time to time (such as might occur in a financial
application). If we know the posterior probabilities, we can trivially revise the
minimum risk decision criterion by modifying (5.23) appropriately. If we have
only a discriminant function, then any change to the loss matrix would require
that we return to the training data and solve the inference problem afresh.

Reject option. Posterior probabilities allow us to determine a rejection criterion that
will minimize the misclassification rate, or more generally the expected loss,
for a given fraction of rejected data points.

Compensating for class priors. Consider our cancer screening example again, andSection 2.1.1
suppose that we have collected a large number of images from the general pop-
ulation for use as training data, which we use to build an automated screening
system. Because cancer is rare amongst the general population, we might find
that, say, only 1 in every 1,000 examples corresponds to the presence of cancer.

146 5. SINGLE-LAYER NETWORKS: CLASSIFICATION

If we used such a data set to train an adaptive model, we could run into severe
difficulties due to the small proportion of those in the cancer class. For in-
stance, a classifier that assigned every point to the normal class would achieve
99.9% accuracy, and it may be difficult to avoid this trivial solution. Also, even
a large data set will contain very few examples of skin images corresponding
to cancer, and so the learning algorithm will not be exposed to a broad range
of examples of such images and hence is not likely to generalize well. A bal-
anced data set with equal numbers of examples from each of the classes would
allow us to find a more accurate model. However, we then have to compensate
for the effects of our modifications to the training data. Suppose we have used
such a modified data set and found models for the posterior probabilities. From
Bayes’ theorem (5.24), we see that the posterior probabilities are proportional
to the prior probabilities, which we can interpret as the fractions of points in
each class. We can therefore simply take the posterior probabilities obtained
from our artificially balanced data set, divide by the class fractions in that data
set, and then multiply by the class fractions in the population to which we wish
to apply the model. Finally, we need to normalize to ensure that the new poste-
rior probabilities sum to one. Note that this procedure cannot be applied if we
have learned a discriminant function directly instead of determining posterior
probabilities.

Combining models. For complex applications, we may wish to break the problem
into a number of smaller sub-problems each of which can be tackled by a sep-
arate module. For example, in our hypothetical medical diagnosis problem,
we may have information available from, say, blood tests as well as skin im-
ages. Rather than combine all of this heterogeneous information into one huge
input space, it may be more effective to build one system to interpret the im-
ages and a different one to interpret the blood data. If each of the two models
gives posterior probabilities for the classes, then we can combine the outputs
systematically using the rules of probability. One simple way to do this is to
assume that, for each class separately, the distributions of inputs for the im-
ages, denoted by xI, and the blood data, denoted by xB, are independent, so
that

p(xI,xB|Ck) = p(xI|Ck)p(xB|Ck). (5.26)

This is an example of a conditional independence property, because the in-Section 11.2
dependence holds when the distribution is conditioned on the class Ck. The
posterior probability, given both the image and blood data, is then given by

p(Ck|xI,xB) ∝ p(xI,xB|Ck)p(Ck)
∝ p(xI|Ck)p(xB|Ck)p(Ck)

∝ p(Ck|xI)p(Ck|xB)

p(Ck)
. (5.27)

Thus, we need the class prior probabilities p(Ck), which we can easily estimate
from the fractions of data points in each class, and then we need to normalize

5.2. Decision Theory 147

Figure 5.9 The confusion matrix for the cancer treat-
ment problem, in which the rows correspond to the true
class and the columns correspond to the assignment
of class made by our decision criterion. The elements
of the matrix show the numbers of true negatives, false
positives, false negatives, and true positives.

(normal cancer
normal NTN NFP

cancer NFN NTP

)

the resulting posterior probabilities so they sum to one. The particular condi-
tional independence assumption (5.26) is an example of a naive Bayes model.Section 11.2.3
Note that the joint marginal distribution p(xI,xB) will typically not factorize
under this model. We will see in later chapters how to construct models for
combining data that do not require the conditional independence assumption
(5.26). A further advantage of using models that output probabilities rather
than decisions is that they can easily be made differentiable with respect to
any adjustable parameters (such as the weight coefficients in the polynomial
regression example), which allows them to be composed and trained jointly
using gradient-based optimization methods.Chapter 7

5.2.5 Classifier accuracy
The simplest measure of performance for a classifier is the fraction of test set

points that are correctly classified. However, we have seen that different types of
error can have different consequences, as expressed through the loss matrix, and
often we therefore do not simply wish to minimize the number of misclassifications.
By changing the location of the decision boundary, we can make trade-offs between
different kinds of error, for example with the goal of minimizing an expected loss.
Because this is such an important concept, we will introduce some definitions and
terminology so that the performance of a classifier can be better characterized.

We will consider again our cancer screening example. For each person tested,Section 2.1.1
there is a ‘true label’ of whether they have cancer or not, and there is also the predic-
tion made by the classifier. If, for a particular person, the classifier predicts cancer
and this is in fact the true label, then the prediction is called a true positive. How-
ever, if the person does not have cancer it is a false positive. Likewise, if the classifier
predicts that a person does not have cancer and this is correct, then the prediction is
called a true negative, otherwise it is a false negative. The false positives are also
known as type 1 errors whereas the false negatives are called type 2 errors. If N is
the total number of people taking the test, then NTP is the number of true positives,
NFP is the number of false positives, NTN is the number of true negatives, and NFN

is the number of false negatives, where

N = NTP +NFP +NTN +NFN. (5.28)

This can be represented as a confusion matrix as shown in Figure 5.9. Accuracy,
measured by the fraction of correct classifications, is then given by

Accuracy =
NTP +NTN

NTP +NFP +NTN +NFN
. (5.29)

148 5. SINGLE-LAYER NETWORKS: CLASSIFICATION

We can see that accuracy can be misleading if there are strongly imbalanced classes.
In our cancer screening example, for instance, where only 1 person in 1,000 has
cancer, a naive classifier that simply decides that nobody has cancer will achieve
99.9% accuracy and yet is completely useless.

Several other quantities can be defined in terms of these numbers, of which the
most commonly encountered are

Precision =
NTP

NTP +NFP
(5.30)

Recall =
NTP

NTP +NFN
(5.31)

False positive rate =
NFP

NFP +NTN
(5.32)

False discovery rate =
NFP

NFP +NTP
(5.33)

In our cancer screening example, precision represents an estimate of the probability
that a person who has a positive test does indeed have cancer, whereas recall is an
estimate of the probability that a person who has cancer is correctly detected by
the test. The false positive rate is an estimate of the probability that a person who is
normal will be classified as having cancer, whereas the false discovery rate represents
the fraction of those testing positive who do not in fact have cancer.

By altering the location of the decision boundary, we can change the trade-offs
between the two kinds of errors. To understand this trade-off, we revisit Figure 5.5,
but now we label the various regions as shown in Figure 5.10. We can relate the
labelled regions to the various true and false rates as follows:

NFP/N = E (5.34)
NTP/N = D + E (5.35)
NFN/N = B + C (5.36)
NTN/N = A+ C (5.37)

where we are implicitly considering the limit N →∞ so that we can relate number
of observations to probabilities.

5.2.6 ROC curve
A probabilistic classifier will output a posterior probability, which can be con-

verted to a decision by setting a threshold. As the value of the threshold is varied, we
can reduce type 1 errors at the expense of increasing type 2 errors, or vice versa. To
better understand this trade-off, it is useful to plot the receiver operating characteris-
tic or ROC curve (Fawcett, 2006), a name that originates from procedures to measure
the performance of radar receivers. This is a graph of true positive rate versus false
positive rate, as shown in Figure 5.11.

As the decision boundary in Figure 5.10 is moved from −∞ to ∞, the ROC
curve is traced out and can then be generated by plotting the cumulative fraction of

5.2. Decision Theory 149

x̂x0

p(x, C1)

p(x, C2)

R1 R2

A

B

C

D

E

Figure 5.10 As in Figure 5.5, with the various regions labelled. In the cancer classification problem, region R1

is assigned to the normal class whereas region R2 is assigned to the cancer class.

correct detection of cancer on the y-axis versus the cumulative fraction of incorrect
detection on the x-axis. Note that a specific confusion matrix represents one point
along the ROC curve. The best possible classifier would be represented by a point at
the top left corner of the ROC diagram. The bottom left corner represents a simple
classifier that assigns every point to the normal class and therefore has no true posi-
tives but also no false positives. Similarly, the top right corner represents a classifier
that assigns everything to the cancer class and therefore has no false negatives but
also no true negatives. In Figure 5.11, the classifiers represented by the blue curve
are better than those of the red curve for any choice of, say, false positive rate. It
is also possible, however, for such curves to cross over, in which case the choice of
which is better will depend on the choice of operating point.

As a baseline, we can consider a random classifier that simply assigns each data
point to cancer with probability ρ and to normal with probability 1− ρ. As we vary
the value of ρ it will trace out an ROC curve given by a diagonal straight line, as
shown in Figure 5.11. Any classifier below the diagonal line performs worse than
random guessing.

Sometimes it is useful to have a single number that characterises the whole ROC
curve. One approach is to measure the area under the curve (AUC). A value of 0.5
for the AUC represents random guessing whereas a value of 1.0 represents a perfect
classifier.

Another measure is the F-score, which is the geometric mean of precision and

150 5. SINGLE-LAYER NETWORKS: CLASSIFICATION

Figure 5.11 The receiver operator characteristic
(ROC) curve is a plot of true positive
rate against false positive rate, and
it characterizes the trade-off between
type 1 and type 2 errors in a classifi-
cation problem. The upper blue curve
represents a better classifier than the
lower red curve. Here the dashed
curve represents the performance of
a simple random classifier.

0 1False positive rate

0

1

Tr
ue

po
si
tiv
e
ra
te

recall, and is therefore defined by

F =
2× precision× recall
precision+ recall

(5.38)

=
2NTP

2NTP +NFP +NFN
. (5.39)

Of course, we can also combine the confusion matrix in Figure 5.9 with the loss ma-
trix in Figure 5.6 to compute the expected loss by multiplying the elements pointwise
and summing the resulting products.

Although the ROC curve can be extended to more than two classes, it rapidly
becomes cumbersome as the number of classes increases.

5.3. Generative Classifiers

We turn next to a probabilistic view of classification and show how models with
linear decision boundaries arise from simple assumptions about the distribution of
the data. We have already discussed the distinction between the discriminative and
the generative approaches to classification. Here we will adopt a generative approachSection 5.2.4
in which we model the class-conditional densities p(x|Ck) as well as the class priors
p(Ck) and then use these to compute posterior probabilities p(Ck|x) through Bayes’
theorem.

First, consider problems having two classes. The posterior probability for class

5.3. Generative Classifiers 151

Figure 5.12 Plot of the logistic sigmoid
function σ(a) defined by
(5.42), shown in red, together
with the scaled probit function
Φ(λa), for λ2 = π/8, shown
in dashed blue, where Φ(a)
is defined by (5.86). The
scaling factor π/8 is chosen
so that the derivatives of
the two curves are equal for
a = 0.

−5 0 5
0

0.5

1

C1 can be written as

p(C1|x) =
p(x|C1)p(C1)

p(x|C1)p(C1) + p(x|C2)p(C2)

=
1

1 + exp(−a) = σ(a) (5.40)

where we have defined
a = ln

p(x|C1)p(C1)
p(x|C2)p(C2)

(5.41)

and σ(a) is the logistic sigmoid function defined by

σ(a) =
1

1 + exp(−a) , (5.42)

which is plotted in Figure 5.12. The term ‘sigmoid’ means S-shaped. This type of
function is sometimes also called a ‘squashing function’ because it maps the whole
real axis into a finite interval. The logistic sigmoid has been encountered already
in earlier chapters and plays an important role in many classification algorithms. It
satisfies the following symmetry property:

σ(−a) = 1− σ(a) (5.43)

as is easily verified. The inverse of the logistic sigmoid is given by

a = ln

(
σ

1− σ

)
(5.44)

and is known as the logit function. It represents the log of the ratio of probabilities
ln [p(C1|x)/p(C2|x)] for the two classes, also known as the log odds.

Note that in (5.40), we have simply rewritten the posterior probabilities in an
equivalent form, and so the appearance of the logistic sigmoid may seem artificial.

152 5. SINGLE-LAYER NETWORKS: CLASSIFICATION

However, it will have significance provided a(x) has a constrained functional form.
We will shortly consider situations in which a(x) is a linear function of x, in which
case the posterior probability is governed by a generalized linear model.

If there areK > 2 classes, we have

p(Ck|x) =
p(x|Ck)p(Ck)∑
j p(x|Cj)p(Cj)

=
exp(ak)∑
j exp(aj)

, (5.45)

which is known as the normalized exponential and can be regarded as a multi-class
generalization of the logistic sigmoid. Here the quantities ak are defined by

ak = ln (p(x|Ck)p(Ck)) . (5.46)

The normalized exponential is also known as the softmax function, as it represents
a smoothed version of the ‘max’ function because, if ak ≫ aj for all j ̸= k, then
p(Ck|x) ≃ 1, and p(Cj |x) ≃ 0.

We now investigate the consequences of choosing specific forms for the class-
conditional densities, looking first at continuous input variables x and then dis-
cussing briefly discrete inputs.

5.3.1 Continuous inputs
Let us assume that the class-conditional densities are Gaussian. We will then ex-

plore the resulting form for the posterior probabilities. To start with, we will assume
that all classes share the same covariance matrixΣ. Thus, the density for class Ck is
given by

p(x|Ck) =
1

(2π)D/2

1

|Σ|1/2
exp

{
−1

2
(x− µk)

TΣ−1(x− µk)

}
. (5.47)

First, suppose that we have two classes. From (5.40) and (5.41), we have

p(C1|x) = σ(wTx+ w0) (5.48)

where we have defined

w = Σ−1(µ1 − µ2) (5.49)

w0 = −1

2
µT

1 Σ
−1µ1 +

1

2
µT

2 Σ
−1µ2 + ln

p(C1)
p(C2)

. (5.50)

We see that the quadratic terms in x from the exponents of the Gaussian densities
have cancelled (due to the assumption of common covariance matrices), leading to
a linear function of x in the argument of the logistic sigmoid. This result is illus-
trated for a two-dimensional input space x in Figure 5.13. The resulting decision
boundaries correspond to surfaces along which the posterior probabilities p(Ck|x)

x1 x2

0

1

x1 x2

Figure 5.13 The left-hand plot shows the class-conditional densities for two classes, denoted red and blue.
On the right is the corresponding posterior probability p(C1|x), which is given by a logistic sigmoid of a linear
function of x. The surface in the right-hand plot is coloured using a proportion of red ink given by p(C1|x) and a
proportion of blue ink given by p(C2|x) = 1− p(C1|x).

are constant and so will be given by linear functions of x, and therefore the decision
boundaries are linear in input space. The prior probabilities p(Ck) enter only through
the bias parameter w0, so that changes in the priors have the effect of making par-
allel shifts of the decision boundary and more generally of the parallel contours of
constant posterior probability.

For the general case ofK classes, the posterior probabilities are given by (5.45)
where, from (5.46) and (5.47), we have

ak(x) = wT
k x+ wk0 (5.51)

in which we have defined

wk = Σ−1µk (5.52)

wk0 = −1

2
µT

kΣ
−1µk + ln p(Ck). (5.53)

We see that the ak(x) are again linear functions of x as a consequence of the cancel-
lation of the quadratic terms due to the shared covariances. The resulting decision
boundaries, corresponding to the minimum misclassification rate, will occur when
two of the posterior probabilities (the two largest) are equal, and so will be defined
by linear functions of x. Thus, we again have a generalized linear model.

If we relax the assumption of a shared covariance matrix and allow each class-
conditional density p(x|Ck) to have its own covariance matrix Σk, then the earlier
cancellations will no longer occur, and we will obtain quadratic functions of x, giv-
ing rise to a quadratic discriminant. The linear and quadratic decision boundaries
are illustrated in Figure 5.14.

5.3.2 Maximum likelihood solution
Once we have specified a parametric functional form for the class-conditional

densities p(x|Ck), we can then determine the values of the parameters, together with

5.3. Generative Classifiers 153

158 5. SINGLE-LAYER NETWORKS: CLASSIFICATION

5.4.1 Activation functions
In linear regression, the model prediction y(x,w) is given by a linear functionChapter 4

of the parameters
y(x,w) = wTx+ w0, (5.69)

which gives a continuous-valued output in the range (−∞,∞). For classification
problems, however, we wish to predict discrete class labels, or more generally pos-
terior probabilities that lie in the range (0, 1). To achieve this, we consider a gener-
alization of this model in which we transform the linear function of w and w0 using
a nonlinear function f(·) so that

y(x,w) = f
(
wTw + w + 0

)
. (5.70)

In the machine learning literature, f(·) is known as an activation function, whereas
its inverse is called a link function in the statistics literature. The decision surfaces
correspond to y(x) = constant, so that wTx = constant, and hence the decision
surfaces are linear functions of x, even if the function f(·) is nonlinear. For this
reason, the class of models described by (5.70) are called generalized linear models
(McCullagh and Nelder, 1989). However, in contrast to the models used for regres-
sion, they are no longer linear in the parameters due to the nonlinear function f(·).
This will lead to more complex analytical and computational properties than for
linear regression models. Nevertheless, these models are still relatively simple com-
pared to the much more flexible nonlinear models that will be studied in subsequent
chapters.

5.4.2 Fixed basis functions
So far in this chapter, we have considered classification models that work di-

rectly with the original input vector x. However, all the algorithms are equally ap-
plicable if we first make a fixed nonlinear transformation of the inputs using a vector
of basis functions φ(x). The resulting decision boundaries will be linear in the fea-
ture space φ, and these correspond to nonlinear decision boundaries in the original x
space, as illustrated in Figure 5.15. Classes that are linearly separable in the feature
space φ(x) need not be linearly separable in the original observation space x.

Note that as in our discussion of linear models for regression, one of the basis
functions is typically set to a constant, say φ0(x) = 1, so that the corresponding
parameter w0 plays the role of a bias.

For many problems of practical interest, there is significant overlap in x-space
between the class-conditional densities p(x|Ck). This corresponds to posterior prob-
abilities p(Ck|x), which, for at least some values of x, are not 0 or 1. In such cases,
the optimal solution is obtained by modelling the posterior probabilities accurately
and then applying standard decision theory. Note that nonlinear transformationsSection 5.2
φ(x) cannot remove such a class overlap, although they can increase the level of
overlap or create an overlap where none existed in the original observation space.
However, suitable choices of nonlinearity can make the process of modelling the
posterior probabilities easier. However, such fixed basis function models have im-
portant limitations, and these will be resolved in later chapters by allowing the basisSection 6.1
functions themselves to adapt to the data.

5.4. Discriminative Classifiers 159

x1

x2

−1 0 1

−1

0

1

φ1

φ2

0 0.5 1

0

0.5

1

Figure 5.15 Illustration of the role of nonlinear basis functions in linear classification models. The left-hand
plot shows the original input space (x1, x2) together with data points from two classes labelled red and blue.
Two ‘Gaussian’ basis functions φ1(x) and φ2(x) are defined in this space with centres shown by the green
crosses and with contours shown by the green circles. The right-hand plot shows the corresponding feature
space (φ1,φ2) together with the linear decision boundary obtained given by a logistic regression model of the
form discussed in Section 5.4.3. This corresponds to a nonlinear decision boundary in the original input space,
shown by the black curve in the left-hand plot.

5.4.3 Logistic regression
We first consider the problem of two-class classification. In our discussion of

generative approaches in Section 5.3, we saw that under rather general assumptions,
the posterior probability of class C1 can be written as a logistic sigmoid acting on a
linear function of the feature vector φ so that

p(C1|φ) = y(φ) = σ
(
wTφ

)
(5.71)

with p(C2|φ) = 1 − p(C1|φ). Here σ(·) is the logistic sigmoid function defined by
(5.42). In the terminology of statistics, this model is known as logistic regression,
although it should be emphasized that this is a model for classification rather than
for continuous variable.

For anM -dimensional feature spaceφ, this model hasM adjustable parameters.
By contrast, if we had fitted Gaussian class-conditional densities using maximum
likelihood, we would have used 2M parameters for the means and M(M + 1)/2
parameters for the (shared) covariance matrix. Together with the class prior p(C1),
this gives a total ofM(M+5)/2+1 parameters, which grows quadratically withM ,
in contrast to the linear dependence on M of the number of parameters in logistic
regression. For large values of M , there is a clear advantage in working with the
logistic regression model directly.

160 5. SINGLE-LAYER NETWORKS: CLASSIFICATION

We now use maximum likelihood to determine the parameters of the logistic
regression model. To do this, we will make use of the derivative of the logistic sig-
moid function, which can conveniently be expressed in terms of the sigmoid function
itself:Exercise 5.18

dσ

da
= σ(1− σ). (5.72)

For a data set {φn, tn}, where φn = φ(xn) and tn ∈ {0, 1}, with n = 1, . . . , N ,
the likelihood function can be written

p(t|w) =
N∏

n=1

ytnn {1− yn}1−tn (5.73)

where t = (t1, . . . , tN)T and yn = p(C1|φn). As usual, we can define an error
function by taking the negative logarithm of the likelihood, which gives the cross-
entropy error function:

E(w) = − ln p(t|w) = −
N∑

n=1

{tn ln yn + (1− tn) ln(1− yn)} (5.74)

where yn = σ(an) and an = wTφn. Taking the gradient of the error function with
respect to w, we obtainExercise 5.19

∇E(w) =
N∑

n=1

(yn − tn)φn (5.75)

where we have made use of (5.72). We see that the factor involving the derivative
of the logistic sigmoid has cancelled, leading to a simplified form for the gradient
of the log likelihood. In particular, the contribution to the gradient from data point
n is given by the ‘error’ yn − tn between the target value and the prediction of
the model times the basis function vector φn. Furthermore, comparison with (4.12)
shows that this takes precisely the same form as the gradient of the sum-of-squares
error function for the linear regression model.Section 4.1.3

The maximum likelihood solution corresponds to ∇E(w) = 0. However, from
(5.75) we see that this no longer corresponds to a set of linear equations, due to
the nonlinearity in y(·), and so this equation does not have a closed-form solution.
One approach to finding a maximum likelihood solution would be to use stochastic
gradient descent, in which ∇En is the nth term on the right-hand side of (5.75).Chapter 7
Stochastic gradient descent will be the principal approach to training the highly non-
linear neural networks discussed in later chapters. However, the maximum likelihood
equation is only ‘slightly’ nonlinear, and in fact the error function (5.74), in which the
model is defined by (5.71), is a convex function of the parameters, which allows the
error function to be minimized using a simple algorithm called iterative reweighted
least squares or IRLS (Bishop, 2006). However, this does not easily generalize to
more complex models such as deep neural networks.

5.4. Discriminative Classifiers 161

Note that maximum likelihood can exhibit severe over-fitting for data sets that
are linearly separable. This arises because the maximum likelihood solution occurs
when the hyperplane corresponding to σ = 0.5, equivalent to wTφ = 0, separates
the two classes and the magnitude of w goes to infinity. In this case, the logis-
tic sigmoid function becomes infinitely steep in feature space, corresponding to a
Heaviside step function, so that every training point from each class k is assigned a
posterior probability p(Ck|x) = 1. Furthermore, there is typically a continuum ofExercise 5.20
such solutions because any separating hyperplane will give rise to the same posterior
probabilities at the training data points. Maximum likelihood provides no way to
favour one such solution over another, and which solution is found in practice will
depend on the choice of optimization algorithm and on the parameter initialization.
Note that the problem will arise even if the number of data points is large compared
with the number of parameters in the model, so long as the training data set is lin-
early separable. The singularity can be avoided by adding a regularization term to
the error function.Chapter 9

5.4.4 Multi-class logistic regression
In our discussion of generative models for multi-class classification, we haveSection 5.3

seen that, for a large class of distributions from the exponential family, the posterior
probabilities are given by a softmax transformation of linear functions of the feature
variables, so that

p(Ck|φ) = yk(φ) =
exp(ak)∑
j exp(aj)

(5.76)

where the pre-activations ak are given by

ak = wT
kφ. (5.77)

There we used maximum likelihood to determine separately the class-conditional
densities and the class priors and then found the corresponding posterior probabilities
using Bayes’ theorem, thereby implicitly determining the parameters {wk}. Here we
consider the use of maximum likelihood to determine the parameters {wk} of this
model directly. To do this, we will require the derivatives of yk with respect to all
the pre-activations aj . These are given byExercise 5.21

∂yk
∂aj

= yk(Ikj − yj) (5.78)

where Ikj are the elements of the identity matrix.
Next we write down the likelihood function. This is most easily done using

the 1-of-K coding scheme in which the target vector tn for a feature vector φn
belonging to class Ck is a binary vector with all elements zero except for element k,
which equals one. The likelihood function is then given by

p(T|w1, . . . ,wK) =
N∏

n=1

K∏

k=1

p(Ck|φn)
tnk =

N∏

n=1

K∏

k=1

ytnk
nk (5.79)

162 5. SINGLE-LAYER NETWORKS: CLASSIFICATION

Figure 5.16 Representation of a multi-class lin-
ear classification model as a neu-
ral network having a single layer
of connections. Each basis func-
tion is represented by a node,
with the solid node represent-
ing the ‘bias’ basis function φ0,
whereas each output y1, . . . , yN is
also represented by a node. The
links between the nodes represent
the corresponding weight and bias
parameters.

φM−1(x)

...

φ1(x)

φ0(x)

yK(x,w)

...

y1(x,w)

where ynk = yk(φn), and T is an N ×K matrix of target variables with elements
tnk. Taking the negative logarithm then gives

E(w1, . . . ,wK) = − ln p(T|w1, . . . ,wK) = −
N∑

n=1

K∑

k=1

tnk ln ynk, (5.80)

which is known as the cross-entropy error function for the multi-class classification
problem.

We now take the gradient of the error function with respect to one of the param-
eter vectors wj . Making use of the result (5.78) for the derivatives of the softmax
function, we obtainExercise 5.22

∇wjE(w1, . . . ,wK) =
N∑

n=1

(ynj − tnj)φn (5.81)

where we have made use of
∑

k tnk = 1. Again, we could optimize the parameters
through stochastic gradient descent.Chapter 7

Once again, we see the same form arising for the gradient as was found for the
sum-of-squares error function with the linear model and for the cross-entropy error
with the logistic regression model, namely the product of the error (ynj − tnj) times
the basis function activation φn. These are examples of a more general result that
we will explore later.Section 5.4.6

Linear classification models can be represented as single-layer neural networks
as shown in Figure 5.16. If we consider the derivative of the error function with
respect to a weight wik, which links basis function φi(x) to output unit tk, we have
from (5.81)

∂E(w1, . . . ,wK)

∂wij
=

N∑

n=1

(ynk − tnk)φi(xn). (5.82)

Comparing this with Figure 5.16, we see that, for each data point n this gradient
takes the form of the output of the basis function at the input end of the weight link
with the ‘error’ (ynk − tnk) at the output end.

5.4. Discriminative Classifiers 163

Figure 5.17 Schematic example of a probability den-
sity p(θ) shown by the blue curve, given in this example
by a mixture of two Gaussians, along with its cumulative
distribution function f(a), shown by the red curve. Note
that the value of the blue curve at any point, such as
that indicated by the vertical green line, corresponds to
the slope of the red curve at the same point. Conversely,
the value of the red curve at this point corresponds to the
area under the blue curve indicated by the shaded green
region. In the stochastic threshold model, the class label
takes the value t = 1 if the value of a = wTφ exceeds
a threshold, otherwise it takes the value t = 0. This is
equivalent to an activation function given by the cumula-
tive distribution function f(a). 0 1 2 3 4

0

0.2

0.4

0.6

0.8

1

5.4.5 Probit regression
We have seen that, for a broad range of class-conditional distributions described

by the exponential family, the resulting posterior class probabilities are given by a
logistic (or softmax) transformation acting on a linear function of the feature vari-
ables. However, not all choices of class-conditional density give rise to such a simple
form for the posterior probabilities, which suggests that it might be worth exploring
other types of discriminative probabilistic model. Consider the two-class case, again
remaining within the framework of generalized linear models, so that

p(t = 1|a) = f(a) (5.83)

where a = wTφ, and f(·) is the activation function.
One way to motivate an alternative choice for the link function is to consider a

noisy threshold model, as follows. For each input φn, we evaluate an = wTφn and
then we set the target value according to

{
tn = 1, if an ! θ,

tn = 0, otherwise.
(5.84)

If the value of θ is drawn from a probability density p(θ), then the corresponding
activation function will be given by the cumulative distribution function

f(a) =

∫ a

−∞
p(θ) dθ (5.85)

as illustrated in Figure 5.17.
As a specific example, suppose that the density p(θ) is given by a zero-mean,

unit-variance Gaussian. The corresponding cumulative distribution function is given
by

Φ(a) =

∫ a

−∞
N (θ|0, 1) dθ, (5.86)

164 5. SINGLE-LAYER NETWORKS: CLASSIFICATION

which is known as the probit function. It has a sigmoidal shape and is compared
with the logistic sigmoid function in Figure 5.12. Note that the use of a Gaussian
distribution with general mean and variances does not change the model because this
is equivalent to a re-scaling of the linear coefficients w. Many numerical packages
can evaluate a closely related function defined by

erf(a) =
2√
π

∫ a

0

exp(−θ2/2) dθ (5.87)

and known as the erf function or error function (not to be confused with the error
function of a machine learning model). It is related to the probit function byExercise 5.23

Φ(a) =
1

2

{
1 +

1√
2
erf(a)

}
. (5.88)

The generalized linear model based on a probit activation function is known as probit
regression. We can determine the parameters of this model using maximum likeli-
hood by a straightforward extension of the ideas discussed earlier. In practice, the
results found using probit regression tend to be like those of logistic regression.

One issue that can occur in practical applications is that of outliers, which can
arise for instance through errors in measuring the input vector x or through misla-
belling of the target value t. Because such points can lie a long way to the wrong side
of the ideal decision boundary, they can seriously distort the classifier. The logistic
and probit regression models behave differently in this respect because the tails of
the logistic sigmoid decay asymptotically like exp(−x) for |x| → ∞, whereas for
the probit activation function, they decay like exp(−x2), and so the probit model
can be significantly more sensitive to outliers.

5.4.6 Canonical link functions
For the linear regression model with a Gaussian noise distribution, the error

function, corresponding to the negative log likelihood, is given by (4.11). If we
take the derivative with respect to the parameter vector w of the contribution to the
error function from a data point n, this takes the form of the ‘error’ yn− tn times the
feature vectorφn, where yn = wTφn. Similarly, for the combination of the logistic-
sigmoid activation function and the cross-entropy error function (5.74) and for the
softmax activation function with the multi-class cross-entropy error function (5.80),
we again obtain this same simple form. We now show that this is a general result
of assuming a conditional distribution for the target variable from the exponential
family along with a corresponding choice for the activation function known as the
canonical link function.

We again make use of the restricted form (3.169) of exponential family distri-
butions. Note that here we are applying the assumption of exponential family distri-
bution to the target variable t, in contrast to Section 5.3.4 where we applied it to the
input vector x. We therefore consider conditional distributions of the target variable
of the form

p(t|η, s) = 1

s
h

(
t

s

)
g(η) exp

{
ηt

s

}
. (5.89)

5.4. Discriminative Classifiers 165

Using the same line of argument as led to the derivation of the result (3.172), we see
that the conditional mean of t, which we denote by y, is given by

y ≡ E[t|η] = −s d

dη
ln g(η). (5.90)

Thus, y and η must related, and we denote this relation through η = ψ(y).
Following Nelder and Wedderburn (1972), we define a generalized linear model

to be one for which y is a nonlinear function of a linear combination of the input (or
feature) variables so that

y = f(wTφ) (5.91)

where f(·) is known as the activation function in the machine learning literature, and
f−1(·) is known as the link function in statistics.

Now consider the log likelihood function for this model, which, as a function of
η, is given by

ln p(t|η, s) =
N∑

n=1

ln p(tn|η, s) =
N∑

n=1

{
ln g(ηn) +

ηntn
s

}
+ const (5.92)

where we are assuming that all observations share a common scale parameter (which
corresponds to the noise variance for a Gaussian distribution, for instance) and so s
is independent of n. The derivative of the log likelihood with respect to the model
parameters w is then given by

∇w ln p(t|η, s) =
N∑

n=1

{
d

dηn
ln g(ηn) +

tn
s

}
dηn
dyn

dyn
dan
∇wan

=
N∑

n=1

1

s
{tn − yn}ψ′(yn)f

′(an)φn (5.93)

where an = wTφn, and we have used yn = f(an) together with the result (5.90)
for E[t|η]. We now see that there is a considerable simplification if we choose a
particular form for the link function f−1(y) given by

f−1(y) = ψ(y), (5.94)

which gives f(ψ(y)) = y and hence f ′(ψ)ψ′(y) = 1. Also, because a = f−1(y),
we have a = ψ and hence f ′(a)ψ′(y) = 1. In this case, the gradient of the error
function reduces to

∇ lnE(w) =
1

s

N∑

n=1

{yn − tn}φn. (5.95)

We have seen that there is a natural pairing between the choice of error function
and the choice of output-unit activation function. Although we have derived this
result in the context of single-layer network models, the same considerations apply
to deep neural networks discussed in later chapters.

166 5. SINGLE-LAYER NETWORKS: CLASSIFICATION

Exercises
5.1 (⋆) Consider a classification problem withK classes and a target vector t that uses a

1-of-K binary coding scheme. Show that the conditional expectation E[t|x] is given
by the posterior probability p(Ck|x).

5.2 (⋆ ⋆) Given a set of data points {xn}, we can define the convex hull to be the set of
all points x given by

x =
∑

n

αnxn (5.96)

where αn ! 0 and
∑

n αn = 1. Consider a second set of points {yn} together with
their corresponding convex hull. By definition, the two sets of points will be linearly
separable if there exists a vector ŵ and a scalar w0 such that ŵTxn +w0 > 0 for all
xn and ŵTyn +w0 < 0 for all yn. Show that if their convex hulls intersect, the two
sets of points cannot be linearly separable, and conversely that if they are linearly
separable, their convex hulls do not intersect.

5.3 (⋆ ⋆) Consider the minimization of a sum-of-squares error function (5.14), and sup-
pose that all the target vectors in the training set satisfy a linear constraint

aTtn + b = 0 (5.97)

where tn corresponds to the nth row of the matrix T in (5.14). Show that as a
consequence of this constraint, the elements of the model prediction y(x) given by
the least-squares solution (5.16) also satisfy this constraint, so that

aTy(x) + b = 0. (5.98)

To do so, assume that one of the basis functions φ0(x) = 1 so that the corresponding
parameter w0 plays the role of a bias.

5.4 (⋆ ⋆) Extend the result of Exercise 5.3 to show that if multiple linear constraints are
satisfied simultaneously by the target vectors, then the same constraints will also be
satisfied by the least-squares prediction of a linear model.

5.5 (⋆) Use the definition (5.38), along with (5.30) and (5.31) to derive the result (5.39)
for the F-score.

5.6 (⋆ ⋆) Consider two non-negative numbers a and b, and show that, if a " b, then
a " (ab)1/2. Use this result to show that, if the decision regions of a two-class
classification problem are chosen to minimize the probability of misclassification,
this probability will satisfy

p(mistake) "
∫

{p(x, C1)p(x, C2)}1/2 dx. (5.99)

5.7 (⋆) Given a loss matrix with elements Lkj , the expected risk is minimized if, for
each x, we choose the class that minimizes (5.23). Verify that, when the loss matrix

Exercises 167

is given by Lkj = 1 − Ikj , where Ikj are the elements of the identity matrix, this
reduces to the criterion of choosing the class having the largest posterior probability.
What is the interpretation of this form of loss matrix?

5.8 (⋆) Derive the criterion for minimizing the expected loss when there is a general loss
matrix and general prior probabilities for the classes.

5.9 (⋆) Consider the average of the posterior probabilities over a set of N data points in
the form

1

N

N∑

N=1

p(Ck|xn). (5.100)

By taking the limit N → ∞, show that this quantity approaches the prior class
probability p(Ck).

5.10 (⋆ ⋆) Consider a classification problem in which the loss incurred when an input
vector from class Ck is classified as belonging to class Cj is given by the loss matrix
Lkj and for which the loss incurred in selecting the reject option is λ. Find the
decision criterion that will give the minimum expected loss. Verify that this reduces
to the reject criterion discussed in Section 5.2.3 when the loss matrix is given by
Lkj = 1− Ikj . What is the relationship between λ and the rejection threshold θ?

5.11 (⋆) Show that the logistic sigmoid function (5.42) satisfies the property σ(−a) =
1− σ(a) and that its inverse is given by σ−1(y) = ln {y/(1− y)}.

5.12 (⋆) Using (5.40) and (5.41), derive the result (5.48) for the posterior class probability
in the two-class generative model with Gaussian densities, and verify the results
(5.49) and (5.50) for the parameters w and w0.

5.13 (⋆) Consider a generative classification model for K classes defined by prior class
probabilities p(Ck) = πk and general class-conditional densities p(φ|Ck) where φ
is the input feature vector. Suppose we are given a training data set {φn, tn} where
n = 1, . . . , N , and tn is a binary target vector of length K that uses the 1-of-K
coding scheme, so that it has components tnj = Ijk if data point n is from class Ck.
Assuming that the data points are drawn independently from this model, show that
the maximum-likelihood solution for the prior probabilities is given by

πk =
Nk

N
(5.101)

where Nk is the number of data points assigned to class Ck.

5.14 (⋆ ⋆) Consider the classification model of Exercise 5.13 and now suppose that the
class-conditional densities are given by Gaussian distributions with a shared covari-
ance matrix, so that

p(φ|Ck) = N (φ|µk,Σ). (5.102)

168 5. SINGLE-LAYER NETWORKS: CLASSIFICATION

Show that the maximum likelihood solution for the mean of the Gaussian distribution
for class Ck is given by

µk =
1

Nk

N∑

n=1

tnkφn, (5.103)

which represents the mean of those feature vectors assigned to class Ck. Similarly,
show that the maximum likelihood solution for the shared covariance matrix is given
by

Σ =
K∑

k=1

Nk

N
Sk (5.104)

where

Sk =
1

Nk

N∑

n=1

tnk(φn − µk)(φn − µk)
T. (5.105)

Thus,Σ is given by a weighted average of the covariances of the data associated with
each class, in which the weighting coefficients are given by the prior probabilities of
the classes.

5.15 (⋆ ⋆) Derive the maximum likelihood solution for the parameters {µki} of the proba-
bilistic naive Bayes classifier with discrete binary features described in Section 5.3.3.

5.16 (⋆ ⋆) Consider a classification problem with K classes for which the feature vector
φ hasM components each of which can take L discrete states. Let the values of the
components be represented by a 1-of-L binary coding scheme. Further suppose that,
conditioned on the class Ck, the M components of φ are independent, so that the
class-conditional density factorizes with respect to the feature vector components.
Show that the quantities ak given by (5.46), which appear in the argument to the
softmax function describing the posterior class probabilities, are linear functions of
the components of φ. Note that this represents an example of a naive Bayes model.Section 11.2.3

5.17 (⋆ ⋆) Derive the maximum likelihood solution for the parameters of the probabilistic
naive Bayes classifier described in Exercise 5.16.

5.18 (⋆) Verify the relation (5.72) for the derivative of the logistic sigmoid function de-
fined by (5.42).

5.19 (⋆) By making use of the result (5.72) for the derivative of the logistic sigmoid, show
that the derivative of the error function (5.74) for the logistic regression model is
given by (5.75).

5.20 (⋆) Show that for a linearly separable data set, the maximum likelihood solution
for the logistic regression model is obtained by finding a vector w whose decision
boundary wTφ(x) = 0 separates the classes and then taking the magnitude of w to
infinity.

5.21 (⋆) Show that the derivatives of the softmax activation function (5.76), where the ak
are defined by (5.77), are given by (5.78).

Exercises 169

5.22 (⋆)Using the result (5.78) for the derivatives of the softmax activation function, show
that the gradients of the cross-entropy error (5.80) are given by (5.81).

5.23 (⋆) Show that the probit function (5.86) and the erf function (5.87) are related by
(5.88).

5.24 (⋆ ⋆) Suppose we wish to approximate the logistic sigmoid σ(a) defined by (5.42)
by a scaled probit function Φ(λa), where Φ(a) is defined by (5.86). Show that if λ is
chosen so that the derivatives of the two functions are equal at a = 0, then λ2 = π/8.

