Section 1.2

Check for
updates

Single-layer
Networks:
Regression

In this chapter we discuss some of the basic ideas behind neural networks using the
framework of linear regression, which we encountered briefly in the context of poly-
nomial curve fitting. We will see that a linear regression model corresponds to a sim-
ple form of neural network having a single layer of learnable parameters. Although
single-layer networks have very limited practical applicability, they have simple an-
alytical properties and provide an excellent framework for introducing many of the
core concepts that will lay a foundation for our discussion of deep neural networks
in later chapters.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024 111
C. M. Bishop, H. Bishop, Deep Learning, https://doi.org/10.1007/978-3-031-45468-4 4



112

4. SINGLE-LAYER NETWORKS: REGRESSION

4.1.

Linear Regression

Section 4.3

Section 6.1

The goal of regression is to predict the value of one or more continuous farget vari-
ables ¢ given the value of a D-dimensional vector x of input variables. Typically we
are given a training data set comprising IV observations {x,, }, where n = 1,..., N,
together with corresponding target values {t,, }, and the goal is to predict the value of
t for a new value of x. To do this, we formulate a function y(x, w) whose values for
new inputs x constitute the predictions for the corresponding values of ¢, and where
w represents a vector of parameters that can be learned from the training data.

The simplest model for regression is one that involves a linear combination of
the input variables:

y(x,w) = wo + w1z + ... + wpxp 4.1)

where x = (z1,...,2p)". The term linear regression sometimes refers specifically
to this form of model. The key property of this model is that it is a linear function
of the parameters wy,...,wp. It is also, however, a linear function of the input
variables x;, and this imposes significant limitations on the model.

4.1.1 Basis functions

We can extend the class of models defined by (4.1) by considering linear com-
binations of fixed nonlinear functions of the input variables, of the form

M—-1

y(x,w) = wy + Z w;p;i(x) 4.2)

Jj=1

where ¢;(x) are known as basis functions. By denoting the maximum value of the
index j by M — 1, the total number of parameters in this model will be M.

The parameter w, allows for any fixed offset in the data and is sometimes called
a bias parameter (not to be confused with bias in a statistical sense). It is often
convenient to define an additional dummy basis function ¢ (x) whose value is fixed
at ¢o(x) = 1 so that (4.2) becomes

M-1
y(x,w) = Z w;igj(x) = w' p(x) 4.3)

=0
where w = (wo,...,wy—1)T and ¢ = (¢o,...,Pdn—1)T. We can represent the

model (4.3) using a neural network diagram, as shown in Figure 4.1.

By using nonlinear basis functions, we allow the function y(x, w) to be a non-
linear function of the input vector x. Functions of the form (4.2) are called linear
models, however, because they are linear in w. It is this linearity in the parameters
that will greatly simplify the analysis of this class of models. However, it also leads
to some significant limitations.



Figure 4.1

Chapter 1

Exercise 4.3

4.1. Linear Regression 113

The linear regression model (4.3) can be ex-
pressed as a simple neural network diagram
involving a single layer of parameters. Here
each basis function ¢;(x) is represented by
an input node, with the solid node repre-
senting the ‘bias’ basis function ¢o, and the
function y(x, w) is represented by an output
node. Each of the parameters w; is shown
by a line connecting the corresponding basis
function to the output.

Before the advent of deep learning it was common practice in machine learning
to use some form of fixed pre-processing of the input variables x, also known as fea-
ture extraction, expressed in terms of a set of basis functions {¢;(x)}. The goal was
to choose a sufficiently powerful set of basis functions that the resulting learning task
could be solved using a simple network model. Unfortunately, it is very difficult to
hand-craft suitable basis functions for anything but the simplest applications. Deep
learning avoids this problem by learning the required nonlinear transformations of
the data from the data set itself.

We have already encountered an example of a regression problem when we dis-
cussed curve fitting using polynomials. The polynomial function (1.1) can be ex-
pressed in the form (4.3) if we consider a single input variable = and if we choose
basis functions defined by ¢;(z) = z7. There are many other possible choices for
the basis functions, for example

¢;(z) = exp {(“’_W} (4.4)

252

where the u; govern the locations of the basis functions in input space, and the

parameter s governs their spatial scale. These are usually referred to as ‘Gaussian’

basis functions, although it should be noted that they are not required to have a

probabilistic interpretation. In particular the normalization coefficient is unimportant

because these basis functions will be multiplied by learnable parameters w;.
Another possibility is the sigmoidal basis function of the form

bi(z) =0 <x — ”J) 4.5)

S

where o (a) is the logistic sigmoid function defined by

1

7= T o)

(4.6)
Equivalently, we can use the tanh function because this is related to the logistic
sigmoid by tanh(a) = 20(2a) — 1, and so a general linear combination of logistic
sigmoid functions is equivalent to a general linear combination of tanh functions in
the sense that they can represent the same class of input—output functions. These
various choices of basis function are illustrated in Figure 4.2.



114 4. SINGLE-LAYER NETWORKS: REGRESSION

1 \ \ 1
0.75 0.75
0.5 | 0.5
0.25 0.25

0 0

1 -1 0 1 -1 0 1

Figure 4.2 Examples of basis functions, showing polynomials on the left, Gaussians of the form (4.4) in the
centre, and sigmoidal basis functions of the form (4.5) on the right.

Section4.1.7

Section 1.2

Yet another possible choice of basis function is the Fourier basis, which leads to
an expansion in sinusoidal functions. Each basis function represents a specific fre-
quency and has infinite spatial extent. By contrast, basis functions that are localized
to finite regions of input space necessarily comprise a spectrum of different spatial
frequencies. In signal processing applications, it is often of interest to consider basis
functions that are localized in both space and frequency, leading to a class of func-
tions known as wavelets (Ogden, 1997; Mallat, 1999; Vidakovic, 1999). These are
also defined to be mutually orthogonal, to simplify their application. Wavelets are
most applicable when the input values live on a regular lattice, such as the successive
time points in a temporal sequence or the pixels in an image.

Most of the discussion in this chapter, however, is independent of the choice of
basis function set, and so we will not specify the particular form of the basis func-
tions, except for numerical illustration. Furthermore, to keep the notation simple, we
will focus on the case of a single target variable ¢, although we will briefly outline
the modifications needed to deal with multiple target variables.

4.1.2 Likelihood function

We solved the problem of fitting a polynomial function to data by minimizing
a sum-of-squares error function, and we also showed that this error function could
be motivated as the maximum likelihood solution under an assumed Gaussian noise
model. We now return to this discussion and consider the least-squares approach,
and its relation to maximum likelihood, in more detail.

As before, we assume that the target variable ¢ is given by a deterministic func-
tion y(x, w) with additive Gaussian noise so that

t=y(x,w)+e 4.7)

where € is a zero-mean Gaussian random variable with variance 2. Thus, we can
write
p(tlx, w,0?) = N(tly(x, w), o). 4.8)



Section 2.3.4

4.1. Linear Regression 115

Now consider a data set of inputs X = {x, ..., Xy} with corresponding target
values t1,...,ty. We group the target variables {t,,} into a column vector that we
denote by t where the typeface is chosen to distinguish it from a single observation
of a multivariate target, which would be denoted t. Making the assumption that these
data points are drawn independently from the distribution (4.8), we obtain an expres-
sion for the likelihood function, which is a function of the adjustable parameters w
and o2

N
pAIX,w,0%) = [[ N(ta|w" b(x4),0%) (4.9)

n=1

where we have used (4.3). Taking the logarithm of the likelihood function and mak-
ing use of the standard form (2.49) for the univariate Gaussian, we have

N
Inp(t[X, w,0%) = > N (ty|w p(x,),0°)
n=1

= —g Ino? — gln@ﬂ') - %E’D(w) (4.10)

where the sum-of-squares error function is defined by

N
Ep(w) = £ 3t~ W' p(xa)) @11

The first two terms in (4.10) can be treated as constants when determining w be-
cause they are independent of w. Therefore, as we saw previously, maximizing the
likelihood function under a Gaussian noise distribution is equivalent to minimizing
the sum-of-squares error function (4.11).

4.1.3 Maximum likelihood

Having written down the likelihood function, we can use maximum likelihood
to determine w and o2. Consider first the maximization with respect to w. The
gradient of the log likelihood function (4.10) with respect to w takes the form

N
1
Ve lnpt|X, w,o?) = = D {tn = wo(xn)} (xn)". (4.12)
n=1
Setting this gradient to zero gives

0= tap(x,)" —w" (Z ¢<xn)¢<xn)T> : (4.13)

Solving for w we obtain
wyr, = (87®) T @, (4.14)



116

4. SINGLE-LAYER NETWORKS: REGRESSION

which are known as the normal equations for the least-squares problem. Here @ is an
N x M matrix, called the design matrix, whose elements are given by ®,,; = ¢;(xy),

so that
¢0(X1) <Z51(X1) ¢M71(X1)
b = ¢O(.X2) ¢1(.X2) ¢M7.1(X2) 4.15)
bo(xn) d1(xn) - dari(x)
The quantity
o' = (27®) " 3" 4.16)

is known as the Moore—Penrose pseudo-inverse of the matrix ® (Rao and Mitra,
1971; Golub and Van Loan, 1996). It can be regarded as a generalization of the no-
tion of a matrix inverse to non-square matrices. Indeed, if ® is square and invertible,
then using the property (AB)~! = B"'A~! we see that ' = &'

At this point, we can gain some insight into the role of the bias parameter wy. If
we make the bias parameter explicit, then the error function (4.11) becomes

1 M—1
=3 D {tn —wo— > wid;(xn)}>. (4.17)
n=1 j=1
Setting the derivative with respect to w, equal to zero and solving for wg, we obtain
M—1
wy =1 — Z w;p; (4.18)
j=1
where we have defined
1 & 1 &
= NZtn, b; = qusj(xn). (4.19)
n=1 n=1

Thus, the bias wy compensates for the difference between the averages (over the
training set) of the target values and the weighted sum of the averages of the basis
function values.

We can also maximize the log likelihood function (4.10) with respect to the
variance o2, giving

ol = Z{t — Wi d(xn)}, (4.20)

and so we see that the maximum likelihood value of the variance parameter is given
by the residual variance of the target values around the regression function.



4.1. Linear Regression 117

Figure 4.3 Geometrical interpretation of the least- S

Exercise 4.4

squares solution in an N-dimensional space

whose axes are the values of ¢1,...,tn. The

least-squares regression function is obtained \
by finding the orthogonal projection of the #2
data vector t onto the subspace spanned by
the basis functions ¢;(x) in which each basis
function is viewed as a vector ¢, of length N
with elements ¢; (x,).

1 y

4.1.4 Geometry of least squares

At this point, it is instructive to consider the geometrical interpretation of the
least-squares solution. To do this, we consider an N-dimensional space whose axes
are given by the ¢, so thatt = (¢4, ... ,tN)T is a vector in this space. Each basis
function ¢, (x,,), evaluated at the NV data points, can also be represented as a vector in
the same space, denoted by ¢, as illustrated in Figure 4.3. Note that ¢ ; corresponds
to the jth column of ®, whereas ¢(x,,) corresponds to the transpose of the nth row of
®. If the number M of basis functions is smaller than the number N of data points,
then the M vectors ¢;(x,,) will span a linear subspace S of dimensionality M. We
define y to be an N-dimensional vector whose nth element is given by y(x,,, w),
where n = 1,..., N. Because Y is an arbitrary linear combination of the vectors
¥, it can live anywhere in the A/ -dimensional subspace. The sum-of-squares error
(4.11) is then equal (up to a factor of 1/2) to the squared Euclidean distance between
y and t. Thus, the least-squares solution for w corresponds to that choice of y that
lies in subspace S and is closest to t. Intuitively, from Figure 4.3, we anticipate that
this solution corresponds to the orthogonal projection of t onto the subspace S. This
is indeed the case, as can easily be verified by noting that the solution for y is given
by ®wy, and then confirming that this takes the form of an orthogonal projection.

In practice, a direct solution of the normal equations can lead to numerical diffi-
culties when ®* @ is close to singular. In particular, when two or more of the basis
vectors ¢ are co-linear, or nearly so, the resulting parameter values can have large
magnitudes. Such near degeneracies will not be uncommon when dealing with real
data sets. The resulting numerical difficulties can be addressed using the technique
of singular value decomposition, or SVD (Deisenroth, Faisal, and Ong, 2020). Note
that the addition of a regularization term ensures that the matrix is non-singular, even
in the presence of degeneracies.

4.1.5 Sequential learning

The maximum likelihood solution (4.14) involves processing the entire training
set in one go and is known as a batch method. This can become computationally
costly for large data sets. If the data set is sufficiently large, it may be worthwhile
to use sequential algorithms, also known as online algorithms, in which the data
points are considered one at a time and the model parameters updated after each
such presentation. Sequential learning is also appropriate for real-time applications
in which the data observations arrive in a continuous stream and predictions must be



118

Chapter 7

Section 1.2

Exercise 4.6

4. SINGLE-LAYER NETWORKS: REGRESSION

made before all the data points are seen.

We can obtain a sequential learning algorithm by applying the technique of
stochastic gradient descent, also known as sequential gradient descent, as follows. If
the error function comprises a sum over data points E = ) E,,, then after presenta-
tion of data point n, the stochastic gradient descent algorithm updates the parameter
vector w using

wl ) = w() —VE, (4.21)

where 7 denotes the iteration number, and 7 is a suitably chosen learning rate pa-
rameter. The value of w is initialized to some starting vector w(®). For the sum-of-
squares error function (4.11), this gives

witD = w4, —wDTe ), (4.22)
where ¢,, = ¢(x,,). This is known as the least-mean-squares or the LMS algorithm.

4.1.6 Regularized least squares

We have previously introduced the idea of adding a regularization term to an
error function to control over-fitting, so that the total error function to be minimized
takes the form

Ep(w) + AEw (w) (4.23)

where A is the regularization coefficient that controls the relative importance of the
data-dependent error Ep(w) and the regularization term Ey (w). One of the sim-
plest forms of regularizer is given by the sum of the squares of the weight vector
elements:

Ew(w) = ;zj:wf = %wTw. (4.24)
If we also consider the sum-of-squares error function given by
1
Ep(w) =5 ;{tn —wlo(x,)}% (4.25)
then the total error function becomes
1o T 2 AT
3 ;{tn = Wik} + Swhw. (4.26)

In statistics, this regularizer provides an example of a parameter shrinkage method
because it shrinks parameter values towards zero. It has the advantage that the error
function remains a quadratic function of w, and so its exact minimizer can be found
in closed form. Specifically, setting the gradient of (4.26) with respect to w to zero
and solving for w as before, we obtain

w=(I+3"®) 3"t 4.27)

This represents a simple extension of the least-squares solution (4.14).



4.1. Linear Regression 119

Q yrc 6, )
O y1(x, w)

Figure 4.4 Representation of a linear regres-
sion model as a neural network hav- $rr-1(%)
ing a single layer of connections.
Each basis function is represented
by a node, with the solid node rep-
resenting the ‘bias’ basis function $1(x)
¢o. Likewise each output y1,...,yx
is represented by a node. The o (x)
links between the nodes represent
the corresponding weight and bias
parameters.

4.1.7 Multiple outputs

So far, we have considered situations with a single target variable ¢. In some
applications, we may wish to predict K > 1 target variables, which we denote col-
lectively by the target vector t = (¢y,...,tx)". This could be done by introducing
a different set of basis functions for each component of t, leading to multiple, inde-
pendent regression problems. However, a more common approach is to use the same
set of basis functions to model all of the components the target vector so that

y(x,w) = Whe(x) (4.28)

where y is a K-dimensional column vector, W is an M x K matrix of parameters,
and ¢(x) is an M-dimensional column vector with elements ¢;(x) with ¢y(x) =1
as before. Again, this can be represented as a neural network having a single layer
of parameters, as shown in Figure 4.4.

Suppose we take the conditional distribution of the target vector to be an isotropic
Gaussian of the form

p(t|x, W, o) = N(t|WTp(x), 0’T). (4.29)

If we have a set of observations tq, ..., ty, we can combine these into a matrix T
of size N x K such that the nth row is given by t-. Similarly, we can combine the
input vectors Xy, ..., Xy into a matrix X. The log likelihood function is then given
by

N
Inp(T|X, W,0%) =3 InN(t, W ¢(x,),0°T)

n=1
NK R R . >
= - In(210%) - — ; [t — WTo(x,)||". (4.30)
As before, we can maximize this function with respect to W, giving
Wy = (978) ' 7T 4.31)
where we have combined the input feature vectors ¢(x1), . .., ¢(xx) into a matrix

®. If we examine this result for each target variable ¢;, we have

wy, = (@T®) " T, = dft, (4.32)



120 4. SINGLE-LAYER NETWORKS: REGRESSION

Exercise 4.7

Section 3.2.7

4.2.

where tj, is an /NV-dimensional column vector with components ¢,,;, forn =1,... N.
Thus, the solution to the regression problem decouples between the different target
variables, and we need compute only a single pseudo-inverse matrix ®', which is
shared by all the vectors wy.

The extension to general Gaussian noise distributions having arbitrary covari-
ance matrices is straightforward. Again, this leads to a decoupling into K inde-
pendent regression problems. This result is unsurprising because the parameters W
define only the mean of the Gaussian noise distribution, and we know that the max-
imum likelihood solution for the mean of a multivariate Gaussian is independent of
the covariance. From now on, we will therefore consider a single target variable ¢
for simplicity.

Decision theory

We have formulated the regression task as one of modelling a conditional proba-
bility distribution p(¢|x), and we have chosen a specific form for the conditional
probability, namely a Gaussian (4.8) with an x-dependent mean y(x, w) governed
by parameters w and with variance given by the parameter o2. Both w and 0% can be
learned from data using maximum likelihood. The result is a predictive distribution
given by

p(tx, W, o) = N (ty(x, war), oap)- (4.33)

The predictive distribution expresses our uncertainty over the value of ¢ for some
new input x. However, for many practical applications we need to predict a specific
value for ¢ rather than returning an entire distribution, particularly where we must
take a specific action. For example, if our goal is to determine the optimal level of
radiation to use for treating a tumour and our model predicts a probability distri-
bution over radiation dose, then we must use that distribution to decide the specific
dose to be administered. Our task therefore breaks down into two stages. In the first
stage, called the inference stage, we use the training data to determine a predictive
distribution p(t|x). In the second stage, known as the decision stage, we use this
predictive distribution to determine a specific value f(x), which will be dependent
on the input vector x, that is optimal according to some criterion. We can do this
by minimizing a loss function that depends on both the predictive distribution p(#|x)
and on f.

Intuitively we might choose the mean of the conditional distribution, so that
we would use f(x) = y(x,wyr). In some cases this intuition will be correct, but
in other situations it can give very poor results. It is therefore useful to formalize
this so that we can understand when it applies and under what assumptions, and the
framework for doing this is called decision theory.

Suppose that we choose a value f(x) for our prediction when the true value is
t. In doing so, we incur some form of penalty or cost. This is determined by a
loss, which we denote L(t, f(x)). Of course, we do not know the true value of ¢, so
instead of minimizing L itself, we minimize the average, or expected, loss which is



4.2. Decision theory 121

Figure 4.5 The regression function f*(x), t

Appendix B

Exercise 4.8

which minimizes the expected

squared loss, is given by the
mean of the conditional distribu-
tion p(t|x).
p(t|iU0,W,0’2)
>
given by
E[L] = //L(t,f(x))p(x,t) dx dt (4.34)

where we are averaging over the distribution of both input and target variables,
weighted by their joint distribution p(x,¢). A common choice of loss function in
regression problems is the squared loss given by L(¢, f(x)) = {f(x) — ¢}*. In this
case, the expected loss can be written

E[L] = / {f(x) — t}?*p(x,t) dxdt. (4.35)

It is important not to confuse the squared-loss function with the sum-of-squares
error function introduced earlier. The error function is used to set the parameters
during training in order to determine the conditional probability distribution p(t|x),
whereas the loss function governs how the conditional distribution is used to arrive
at a predictive function f(x) specifying a prediction for each value of x.

Our goal is to choose f(x) so as to minimize E[L]. If we assume a completely
flexible function f(x), we can do this formally using the calculus of variations to
give

OE[L] /
— =2 x) —t}p(x,t)dt = 0. (4.36)
50 = 2 1100 =t
Solving for f(x) and using the sum and product rules of probability, we obtain
1
f(x) = o) /tp(x, t)dt = /tp(t|x) dt = E[t|x], (4.37)
p\X

which is the conditional average of ¢ conditioned on x and is known as the regression
function. This result is illustrated in Figure 4.5. It can readily be extended to multiple
target variables represented by the vector t, in which case the optimal solution is the
conditional average f*(x) = E;[t|x]. For a Gaussian conditional distribution of the



122 4. SINGLE-LAYER NETWORKS: REGRESSION

Exercise 4.12

form (4.8), the conditional mean will be simply

E[t|x] = /tp(t|x) dt = y(x, w). (4.38)

The use of calculus of variations to derive (4.37) implies that we are optimiz-
ing over all possible functions f(x). Although any parametric model that we can
implement in practice is limited in the range of functions that it can represent, the
framework of deep neural networks, discussed extensively in later chapters, provides
a highly flexible class of functions that, for many practical purposes, can approxi-
mate any desired function to high accuracy.

We can derive this result in a slightly different way, which will also shed light
on the nature of the regression problem. Armed with the knowledge that the optimal
solution is the conditional expectation, we can expand the square term as follows

{f(x) = t}* = {f(x) — E[t|x] + E[t}x] -}
= {f(x) — Elt)x]}* +2{f (x) - E[tx]HE[t]x] — t} + {E[t|x] - t}*

where, to keep the notation uncluttered, we use E[¢|x] to denote E; [¢|x]. Substituting
into the loss function (4.35) and performing the integral over ¢, we see that the cross-
term vanishes and we obtain an expression for the loss function in the form

E[L] = /{f(x) — E[t|x]}? p(x) dx + /Var [t|x] p(x) dx. (4.39)

The function f(x) we seek to determine appears only in the first term, which will be
minimized when f(x) is equal to E[¢|x], in which case this term will vanish. This is
simply the result that we derived previously, and shows that the optimal least-squares
predictor is given by the conditional mean. The second term is the variance of the
distribution of ¢, averaged over x, and represents the intrinsic variability of the target
data and can be regarded as noise. Because it is independent of f(x), it represents
the irreducible minimum value of the loss function.

The squared loss is not the only possible choice of loss function for regression.
Here we consider briefly one simple generalization of the squared loss, called the
Minkowski loss, whose expectation is given by

E[L,) = / 1£(0) — t]7p(x, £) dxdt, (4.40)

which reduces to the expected squared loss for ¢ = 2. The function |f — ¢|7 is
plotted against f — ¢ for various values of ¢ in Figure 4.6. The minimum of E[L,] is
given by the conditional mean for ¢ = 2, the conditional median for ¢ = 1, and the
conditional mode for ¢ — 0.

Note that the Gaussian noise assumption implies that the conditional distribution
of ¢ given x is unimodal, which may be inappropriate for some applications. In
this case a squared loss can lead to very poor results and we need to develop more
sophisticated approaches. For example, we can extend this model by using mixtures



4.3. The Bias—Variance Trade-off 123

2 2
q=20.3 qg=1
o) —
= =
11 |1
S =
0 T T T 0 T T T
-2 —1 0 1 2 —2 -1 0 1 2
f—t f—t
2 2
q=10
o~ (=
= S
| 1 4 | 1 4
= =
0 0 T T T
—2 2 -2 -1 0 1 2
f—t

Figure 4.6 Plots of the quantity L, = |f — ¢| for various values of q.

Section 6.5

of Gaussians to give multimodal conditional distributions, which often arise in the
solution of inverse problems. Our focus in this section has been on decision theory
for regression problems, and in the next chapter we shall develop analogous concepts

Section 5.2 for classification tasks.
4.3. The Bias—Variance Trade-off
So far in our discussion of linear models for regression, we have assumed that the
Section 1.2 form and number of basis functions are both given. We have also seen that the use

of maximum likelihood can lead to severe over-fitting if complex models are trained
using data sets of limited size. However, limiting the number of basis functions
to avoid over-fitting has the side effect of limiting the flexibility of the model to
capture interesting and important trends in the data. Although a regularization term
can control over-fitting for models with many parameters, this raises the question of
how to determine a suitable value for the regularization coefficient A\. Seeking the



124

Section 4.2

4. SINGLE-LAYER NETWORKS: REGRESSION

solution that minimizes the regularized error function with respect to both the weight
vector w and the regularization coefficient ) is clearly not the right approach, since
this leads to the unregularized solution with A = 0.

It is instructive to consider a frequentist viewpoint of the model complexity is-
sue, known as the bias—variance trade-off. Although we will introduce this concept
in the context of linear basis function models, where it is easy to illustrate the ideas
using simple examples, the discussion has very general applicability. Note, however,
that over-fitting is really an unfortunate property of maximum likelihood and does
not arise when we marginalize over parameters in a Bayesian setting (Bishop, 2006).

When we discussed decision theory for regression problems, we considered var-
ious loss functions, each of which leads to a corresponding optimal prediction once
we are given the conditional distribution p(¢|x). A popular choice is the squared-loss
function, for which the optimal prediction is given by the conditional expectation,
which we denote by h(x) and is given by

h(x) = Eft|x] = /tp(t|x) dt. (4.41)

We have also seen that the expected squared loss can be written in the form

/{f x)}? p(x dx—l—/ {h(x) — t}*p(x,t)dxdt.  (4.42)

Recall that the second term, which is independent of f(x), arises from the intrin-
sic noise on the data and represents the minimum achievable value of the expected
loss. The first term depends on our choice for the function f(x), and we will seek a
solution for f(x) that makes this term a minimum. Because it is non-negative, the
smallest value that we can hope to achieve for this term is zero. If we had an unlim-
ited supply of data (and unlimited computational resources), we could in principle
find the regression function h(x) to any desired degree of accuracy, and this would
represent the optimal choice for f(x). However, in practice we have a data set D
containing only a finite number N of data points, and consequently, we cannot know
the regression function h(x) exactly.

If we were to model h(x) using a function governed by a parameter vector w,
then from a Bayesian perspective, the uncertainty in our model would be expressed
through a posterior distribution over w. A frequentist treatment, however, involves
making a point estimate of w based on the data set D and tries instead to interpret the
uncertainty of this estimate through the following thought experiment. Suppose we
had a large number of data sets each of size N and each drawn independently from
the distribution p(¢, x). For any given data set D, we can run our learning algorithm
and obtain a prediction function f(x; D). Different data sets from the ensemble will
give different functions and consequently different values of the squared loss. The
performance of a particular learning algorithm is then assessed by taking the average
over this ensemble of data sets.

Consider the integrand of the first term in (4.42), which for a particular data set
D takes the form

{f(x;D) — h(x)}>. (4.43)



Section 1.2

4.3. The Bias—Variance Trade-off 125

Because this quantity will be dependent on the particular data set D, we take its aver-
age over the ensemble of data sets. If we add and subtract the quantity Ep[f(x; D)]
inside the braces, and then expand, we obtain

{f(x; D) — Eplf(x;D)] + Ep[f(x; D)] — h(x)}?

= {/(x;D) = Eplf(x;D)]}* + {Ep[/f (x; D)] — h(x)}

+2{f(x;D) — Ep[f(x; D)|HEp[f(x; D)] — h(x)}. (4.44)

We now take the expectation of this expression with respect to D and note that the
final term will vanish, giving

Ep [{f(x;D) — h(x)}?]
= {Ep[f(x; D)] — h(x)}* + Ep [{f(x; D) — Ep[f(x; D)]}*] . (4.45)

(bias)? variance

We see that the expected squared difference between f(x;D) and the regression
function h(x) can be expressed as the sum of two terms. The first term, called the
squared bias, represents the extent to which the average prediction over all data sets
differs from the desired regression function. The second term, called the variance,
measures the extent to which the solutions for individual data sets vary around their
average, and hence, this measures the extent to which the function f(x;D) is sen-
sitive to the particular choice of data set. We will provide some intuition to support
these definitions shortly when we consider a simple example.

So far, we have considered a single input value x. If we substitute this expansion
back into (4.42), we obtain the following decomposition of the expected squared
loss:

expected loss = (bias)? + variance + noise (4.46)

where
(bias)? = /{ED [f(x;D)] — h(x)}*p(x) dx (4.47)
variance = /ED [{f(x;D) — Ep[f(x; D)]}*] p(x) dx (4.43)

noise = //{h(x) — t}*p(x,t) dx dt (4.49)

and the bias and variance terms now refer to integrated quantities.

Our goal is to minimize the expected loss, which we have decomposed into the
sum of a (squared) bias, a variance, and a constant noise term. As we will see, there is
a trade-off between bias and variance, with very flexible models having low bias and
high variance, and relatively rigid models having high bias and low variance. The
model with the optimal predictive capability is the one that leads to the best balance
between bias and variance. This is illustrated by considering the sinusoidal data set
introduced earlier. Here we independently generate 100 data sets, each containing



126

4. SINGLE-LAYER NETWORKS: REGRESSION

N = 25 data points, from the sinusoidal curve h(z) = sin(27x). The data sets are
indexed by [ = 1,..., L, where L = 100. For each data set DU, we fit a model
with M = 24 Gaussian basis functions along with a constant ‘bias’ basis function to
give a total of 25 parameters. By minimizing the regularized error function (4.26),
we obtain a prediction function f)(z), as shown in Figure 4.7.

The top row corresponds to a large value of the regularization coefficient \ that
gives low variance (because the red curves in the left plot look similar) but high
bias (because the two curves in the right plot are very different). Conversely on
the bottom row, for which A is small, there is large variance (shown by the high
variability between the red curves in the left plot) but low bias (shown by the good
fit between the average model fit and the original sinusoidal function). Note that
the result of averaging many solutions for the complex model with M = 25 is a
very good fit to the regression function, which suggests that averaging may be a
beneficial procedure. Indeed, a weighted averaging of multiple solutions lies at the
heart of a Bayesian approach, although the averaging is with respect to the posterior
distribution of parameters, not with respect to multiple data sets.

We can also examine the bias—variance trade-off quantitatively for this example.
The average prediction is estimated from

L
DA (4.50)

=1

h\H

and the integrated squared bias and integrated variance are then given by

N 2

> {F(@n) = hian)} (4.51)
'y
>

n=

Z\H

blas

—

L
S { D (@) = Flan)} (452)

=1

variance =

Z\H
Sl

where the integral over x, weighted by the distribution p(x), is approximated by a
finite sum over data points drawn from that distribution. These quantities, along with
their sum, are plotted as a function of In A in Figure 4.8. We see that small values
of A allow the model to become finely tuned to the noise on each individual data set
leading to large variance. Conversely, a large value of A pulls the weight parameters
towards zero leading to large bias.

Note that the bias—variance decomposition is of limited practical value because
it is based on averages with respect to ensembles of data sets, whereas in practice
we have only the single observed data set. If we had a large number of independent
training sets of a given size, we would be better off combining them into a single
larger training set, which of course would reduce the level of over-fitting for a given
model complexity. Nevertheless, the bias—variance decomposition often provides
useful insights into the model complexity issue, and although we have introduced it
in this chapter from the perspective of regression problems, the underlying intuition
has broad applicability.



4.3. The Bias—Variance Trade-off 127

In\=3

—1 4
T T
0 x 1
1_
t
14
T T T T
0 x 1 0 T 1
1 14
t //{2"/‘ t
7
—1 1 —11
T T T T
0 z 1 0 T 1

Figure 4.7 lllustration of the dependence of bias and variance on model complexity governed by a regulariza-
tion parameter )\, using the sinusoidal data from Chapter 1. There are L = 100 data sets, each having N = 25
data points, and there are 24 Gaussian basis functions in the model so that the total number of parameters is
M = 25 including the bias parameter. The left column shows the result of fitting the model to the data sets for
various values of In A (for clarity, only 20 of the 100 fits are shown). The right column shows the corresponding
average of the 100 fits (red) along with the sinusoidal function from which the data sets were generated (green).



128 4. SINGLE-LAYER NETWORKS: REGRESSION

Figure 4.8 Plot of squared bias and vari- 0.25 4
ance, together with their sum, correspond-

ing to the results shown in Figure 4.7. Also
shown is the average test set error for a \__/ (bias)?
test data set size of 1,000 points. The min-

imum value of (bias)? + variance occurs variance
around In A = 0.43, which is close to the —— (bias)? + variance
value that gives the minimum error on the
test data. — test error
0 -
T
-3 0 3
In A
Exercises _ o o :
4.1 () Consider the sum-of-squares error function given by (1.2) in which the function
y(x, w) is given by the polynomial (1.1). Show that the coefficients w = {w; } that
minimize this error function are given by the solution to the following set of linear
equations:
M
D Aijw; =T, (4.53)
j=0
where
N N
Aij = (wn)™, T, =S (2n)tn. (4.54)
n=1 n=1
Here a suffix i or j denotes the index of a component, whereas ()¢ denotes x raised
to the power of 4.
4.2 (x) Write down the set of coupled linear equations, analogous to (4.53), satisfied by
the coefficients w; that minimize the regularized sum-of-squares error function given
by (1.4).
4.3 (x) Show that the tanh function defined by

et —e ¢
tanh(a) = —— 4.55
anh(a) = —— (4.55)
and the logistic sigmoid function defined by (4.6) are related by
tanh(a) = 20(2a) — 1. (4.56)

Hence, show that a general linear combination of logistic sigmoid functions of the
form

S

M
y(x,w) = wy + Z w;o <W> (4.57)

Jj=1



4.4

4.5

4.6

4.7

Exercises 129

is equivalent to a linear combination of tanh functions of the form

M
T — 11
y(x,u) = ug + Z uj tanh ( 23%) (4.58)
Jj=1
and find expressions to relate the new parameters {u;,...,uys} to the original pa-
rameters {ws, ..., wp}.

(x % x) Show that the matrix
o(@T®) " (4.59)

takes any vector v and projects it onto the space spanned by the columns of ®. Use
this result to show that the least-squares solution (4.14) corresponds to an orthogonal
projection of the vector t onto the manifold S, as shown in Figure 4.3.

(x) Consider a data set in which each data point ¢,, is associated with a weighting
factor r,, > 0, so that the sum-of-squares error function becomes

Zrn {tn, — W p(x,)}". (4.60)

Find an expression for the solution w* that minimizes this error function. Give two
alternative interpretations of the weighted sum-of-squares error function in terms of
(i) data-dependent noise variance and (ii) replicated data points.

(x) By setting the gradient of (4.26) with respect to w to zero, show that the exact
minimum of the regularized sum-of-squares error function for linear regression is
given by (4.27).

(xx) Consider a linear basis function regression model for a multivariate target vari-
able t having a Gaussian distribution of the form

p(t[W,X) = N(tly(x, W), ) (4.61)

where
y(x, W) = Whp(x) (4.62)

together with a training data set comprising input basis vectors ¢(x,,) and corre-
sponding target vectors t,,, withn = 1,..., N. Show that the maximum likelihood
solution Wy, for the parameter matrix W has the property that each column is
given by an expression of the form (4.14), which was the solution for an isotropic
noise distribution. Note that this is independent of the covariance matrix 3. Show
that the maximum likelihood solution for X is given by

N
- % Z (tn — Wi d(x,)) (t, — WE/Iqu(xn))T. (4.63)



130

4.8

4.9

410
4.11

412

4. SINGLE-LAYER NETWORKS: REGRESSION

(%) Consider the generalization of the squared-loss function (4.35) for a single target
variable ¢ to multiple target variables described by the vector t given by

E[L(t,f(x))] = / |£(x) — t]|%p(x, t) dx dt. (4.64)

Using the calculus of variations, show that the function f(x) for which this expected
loss is minimized is given by

f(x) = E[t|x]. (4.65)

(x) By expansion of the square in (4.64), derive a result analogous to (4.39) and,

hence, show that the function f(x) that minimizes the expected squared loss for a

vector t of target variables is again given by the conditional expectation of t in the
form (4.65).

(x %) Rederive the result (4.65) by first expanding (4.64) analogous to (4.39).
(x %) The following distribution

4 ex ( W) (4.66)
2202) /4T (1/q) P\ 202 '

is a generalization of the univariate Gaussian distribution. Here I'(z) is the gamma
function defined by

p(zlo?, q) =

I(z) = / u” e " du. (4.67)
Show that this distribution is normalized so that
/ p(z|02, q)dx =1 (4.68)

and that it reduces to the Gaussian when ¢ = 2. Consider a regression model in
which the target variable is given by ¢ = y(x, w)+ € and ¢ is a random noise variable
drawn from the distribution (4.66). Show that the log likelihood function over w and

o2, for an observed data set of input vectors X = {xy,...,xx} and corresponding
target variables t = (¢;,...,tx)7, is given by
1 o N
Inp(t|X, w, o> ~5.3 Z y(Xp, W) — |7 — ;ln(Qa ) +const  (4.69)

where ‘const’ denotes terms independent of both w and 2. Note that, as a function
of w, this is the L, error function considered in Section 4.2.

(%) Consider the expected loss for regression problems under the L, loss function
given by (4.40). Write down the condition that y(x) must satisfy to minimize E[L,].
Show that, for ¢ = 1, this solution represents the conditional median, i.e., the func-
tion y(x) such that the probability mass for ¢ < y(x) is the same as for ¢ > y(x).
Also show that the minimum expected L, loss for ¢ — 0 is given by the conditional
mode, i.e., by the function y(x) being equal to the value of ¢ that maximizes p(t|x)
for each x.



